Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This takes in a series of multi-layer raster files and returns a phenology projection raster, following methodologies described in John (2016) <https://etda.libraries.psu.edu/catalog/13521clj5135>.
Combine probabilistic forecasts using CRPS learning algorithms proposed in Berrisch, Ziel (2021) <doi:10.48550/arXiv.2102.00968> <doi:10.1016/j.jeconom.2021.11.008>. The package implements multiple online learning algorithms like Bernstein online aggregation; see Wintenberger (2014) <doi:10.48550/arXiv.1404.1356>. Quantile regression is also implemented for comparison purposes. Model parameters can be tuned automatically with respect to the loss of the forecast combination. Methods like predict(), update(), plot() and print() are available for convenience. This package utilizes the optim C++ library for numeric optimization <https://github.com/kthohr/optim>.
Spectral response data for broadband ultraviolet and visible radiation sensors. Angular response data for broadband ultraviolet and visible radiation sensors and diffusers used as entrance optics. Data obtained from multiple sources were used: author-supplied data from scientific research papers, sensor-manufacturer supplied data, and published sensor specifications. Part of the r4photobiology suite Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
The data sets used in the online course ,,PogromcyDanych''. You can process data in many ways. The course Data Crunchers will introduce you to this variety. For this reason we will work on datasets of different size (from several to several hundred thousand rows), with various level of complexity (from two to two thousand columns) and prepared in different formats (text data, quantitative data and qualitative data). All of these data sets were gathered in a single big package called PogromcyDanych to facilitate access to them. It contains all sorts of data sets such as data about offer prices of cars, results of opinion polls, information about changes in stock market indices, data about names given to newborn babies, ski jumping results or information about outcomes of breast cancer patients treatment.
Structured fusion Lasso penalized estimation of multi-state models with the penalty applied to absolute effects and absolute effect differences (i.e., effects on transition-type specific hazard rates).
Functional claims reserving methods based on aggregated chain-ladder data, also known as a run-off triangle, implemented in three nonparametric algorithms (PARALLAX, REACT, and MACRAME) proposed in Maciak, Mizera, and Pešta (2022) <doi:10.1017/asb.2022.4>. Additional methods including permutation bootstrap for completed run-off triangles are also provided.
Google Trends provides cross-sectional and time-series data on searches, but lacks readily available longitudinal data. Researchers, who want to create longitudinal Google Trends on their own, face practical challenges, such as normalized counts that make it difficult to combine cross-sectional and time-series data and limitations in data formats and timelines that limit data granularity over extended time periods. This package addresses these issues and enables researchers to generate longitudinal Google Trends data. This package is built on pytrends', a Python library that acts as the unofficial Google Trends API to collect Google Trends data. As long as the Google Trends API', pytrends and all their dependencies are working, this package will work. During testing, we noticed that for the same input (keyword, topic, data_format, timeline), the output index can vary from time to time. Besides, if the keyword is not very popular, then the resulting dataset will contain a lot of zeros, which will greatly affect the final result. While this package has no control over the accuracy or quality of Google Trends data, once the data is created, this package coverts it to longitudinal data. In addition, the user may encounter a 429 Too Many Requests error when using cross_section() and time_series() to collect Google Trends data. This error indicates that the user has exceeded the rate limits set by the Google Trends API'. For more information about the Google Trends API - pytrends', visit <https://pypi.org/project/pytrends/>.
Computes the All-Resolution Inference method in the permutation framework, i.e., simultaneous lower confidence bounds for the number of true discoveries. <doi:10.1002/sim.9725>.
This package provides a graphical user interface for viewing and designing various types of graphs of the data. The graphs can be saved in different formats of an image.
Simulation of continuous, correlated high-dimensional data with time to event or binary response, and parallelized functions for Lasso, Ridge, and Elastic Net penalized regression with repeated starts and two-dimensional tuning of the Elastic Net.
Perform permutation-based hypothesis testing for randomized experiments as suggested in Ludbrook & Dudley (1998) <doi:10.2307/2685470> and Ernst (2004) <doi:10.1214/088342304000000396>, introduced in Pham et al. (2022) <doi:10.1016/j.chemosphere.2022.136736>.
Currently incorporate the generalized odds-rate model (a type of linear transformation model) for interval-censored data based on penalized monotonic B-Spline. More methods under other semiparametric models such as cure model or additive model will be included in future versions. For more details see Lu, M., Liu, Y., Li, C. and Sun, J. (2019) <arXiv:1912.11703>.
Following the method of Bailey et al., computes for a collection of candidate models the probability of backtest overfitting, the performance degradation and probability of loss, and the stochastic dominance.
This package provides data sets and functions for exploration of Pakistan Population Census 2023 (<https://www.pbs.gov.pk/>).
Includes functions implementing the conditionally optimal matching algorithm, which can be used to generate matched samples in designs with multiple groups. The algorithm is described in Nattino, Song and Lu (2022) <doi:10.1016/j.csda.2021.107364>.
Computes predicted probabilities and marginal effects for binary & ordinal logit and probit, (partial) generalized ordinal & multinomial logit models estimated with the glm(), clm() (in the ordinal package), and vglm() (in the VGAM package) functions.
Learn optimal policies via doubly robust empirical welfare maximization over trees. Given doubly robust reward estimates, this package finds a rule-based treatment prescription policy, where the policy takes the form of a shallow decision tree that is globally (or close to) optimal.
Send push notifications to mobile devices or the desktop using Pushover <https://pushover.net>. These notifications can display things such as results, job status, plots, or any other text or numeric data.
Computation of robust standard errors of Poisson fixed effects models, following Wooldridge (1999).
Statistical functions to describe a Pareto Positive Stable (PPS) distribution and fit it to real data. Graphical and statistical tools to validate the fits are included.
Computes power and level tables for goodness-of-fit tests for the normal, Laplace, and uniform distributions. Generates output in LaTeX format to facilitate reporting and reproducibility. Explanatory graphs help visualize the statistical power of test statistics under various alternatives. For more details, see Lafaye De Micheaux and Tran (2016) <doi:10.18637/jss.v069.i03>.
This package provides a direct and flexible method for estimating an ICA model. This approach estimates the densities for each component directly via a tilted Gaussian. The tilt functions are estimated via a GAM Poisson model. Details can be found in "Elements of Statistical Learning (2nd Edition)" in Section 14.7.4.
This package contains the functions for construction and visualization of underlying and reflexivity graphs of the three families of the proximity catch digraphs (PCDs), see (Ceyhan (2005) ISBN:978-3-639-19063-2), and for computing the edge density of these PCD-based graphs which are then used for testing the patterns of segregation and association against complete spatial randomness (CSR)) or uniformity in one and two dimensional cases. The PCD families considered are Arc-Slice PCDs, Proportional-Edge (PE) PCDs (Ceyhan et al. (2006) <doi:10.1016/j.csda.2005.03.002>) and Central Similarity PCDs (Ceyhan et al. (2007) <doi:10.1002/cjs.5550350106>). See also (Ceyhan (2016) <doi:10.1016/j.stamet.2016.07.003>) for edge density of the underlying and reflexivity graphs of PE-PCDs. The package also has tools for visualization of PCD-based graphs for one, two, and three dimensional data.
This package provides functions and data sets for the text Probability and Statistics with R.