Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements fast, safe, and customizable assertions routines, which can be used in place of base::stopifnot().
Extract and interact with data from the Scottish Health and Social Care Open Data platform <https://www.opendata.nhs.scot>.
Simulates pooled sequencing data under a variety of conditions. Also allows for the evaluation of the average absolute difference between allele frequencies computed from genotypes and those computed from pooled data. Carvalho et al., (2022) <doi:10.1101/2023.01.20.524733>.
Fits successive Lasso models for several blocks of (omics) data with different priorities and takes the predicted values as an offset for the next block. Also offers options to deal with block-wise missingness in multi-omics data.
The image of the amino acid transform on the protein level is drawn, and the automatic routing of the functional elements such as the domain and the mutation site is completed.
This package provides functions to easily convert data to binary formats other programs/machines can understand.
Package for learning and evaluating (subgroup) policies via doubly robust loss functions. Policy learning methods include doubly robust blip/conditional average treatment effect learning and sequential policy tree learning. Methods for (subgroup) policy evaluation include doubly robust cross-fitting and online estimation/sequential validation. See Nordland and Holst (2022) <doi:10.48550/arXiv.2212.02335> for documentation and references.
Design parameters of the optimal two-period multiarm platform design (controlling for either family-wise error rate or pair-wise error rate) can be calculated using this package, allowing pre-planned deferred arms to be added during the trial. More details about the design method can be found in the paper: Pan, H., Yuan, X. and Ye, J. (2022) "An optimal two-period multiarm platform design with new experimental arms added during the trial". Manuscript submitted for publication. For additional references: Dunnett, C. W. (1955) <doi:10.2307/2281208>.
References and cites R and R packages on the fly in R Markdown and Quarto'. pakret provides a minimalist API that generates preformatted citations for R and R packages, and adds their references to a .bib file directly from within your document.
Market odds from from Pinnacle, an online sports betting bookmaker (see <https://www.pinnacle.com> for more information). Included are datasets for the Major League Baseball (MLB) 2016 season and the USA election 2016. These datasets can be used to build models and compare statistical information with the information from prediction markets.The Major League Baseball (MLB) 2016 dataset can be used for sabermetrics analysis and also can be used in conjunction with other popular Major League Baseball (MLB) datasets such as Retrosheets or the Lahman package by merging by GameID.
Deterministic Pena-Yohai initial estimator for robust S estimators of regression. The procedure is described in detail in Pena, D., & Yohai, V. (1999) <doi:10.2307/2670164>.
Assessment for statistically-based PPQ sampling plan, including calculating the passing probability, optimizing the baseline and high performance cutoff points, visualizing the PPQ plan and power dynamically. The analytical idea is based on the simulation methods from the textbook Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Methods for CMC Applications. In Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry (pp. 227-250). Springer, Cham.
This package provides tools for downloading, reading and analyzing the National Survey of Demographic and Health - PNDS, a household survey from Brazilian Institute of Geography and Statistics - IBGE. The data must be downloaded from the official website <https://www.ibge.gov.br/>. Further analysis must be made using package survey'.
Anomaly detection method based on the paper "Truth will out: Departure-based process-level detection of stealthy attacks on control systems" from Wissam Aoudi, Mikel Iturbe, and Magnus Almgren (2018) <DOI:10.1145/3243734.3243781>. Also referred to the following implementation: <https://github.com/rahulrajpl/PyPASAD>.
Reverse depends for a given package are queued such that multiple workers can run the reverse-dependency tests in parallel.
Fits Bayesian mixture models to estimate marker dosage for dominant markers in autopolyploids using JAGS (1.0 or greater) as outlined in Baker et al "Bayesian estimation of marker dosage in sugarcane and other autopolyploids" (2010, <doi:10.1007/s00122-010-1283-z>). May be used in conjunction with polySegratio for simulation studies and comparison with standard methods.
Streamlines the steps for adding colour scales and associated legends when working with base R graphics, especially for interactive use. Popular palettes are included and pretty legends produced when mapping a large variety of vector classes to a colour scale. An additional helper for adding axes and grid lines complements the base::plot() work flow.
This package provides a collection of methods for commonly undertaken analytical tasks, primarily developed for Public Health Scotland (PHS) analysts, but the package is also generally useful to others working in the healthcare space, particularly since it has functions for working with Community Health Index (CHI) numbers. The package can help to make data manipulation and analysis more efficient and reproducible.
Data sets for statistical inference modeling related to People Analytics. Contains various data sets from the book Handbook of Regression Modeling in People Analytics by Keith McNulty (2020).
Implementation of commonly used penalized functional linear regression models, including the Smooth and Locally Sparse (SLoS) method by Lin et al. (2016) <doi:10.1080/10618600.2016.1195273>, Nested Group bridge Regression (NGR) method by Guan et al. (2020) <doi:10.1080/10618600.2020.1713797>, Functional Linear Regression That's interpretable (FLIRTI) by James et al. (2009) <doi:10.1214/08-AOS641>, and the Penalized B-spline regression method.
Pattern Sequence Based Forecasting (PSF) takes univariate time series data as input and assist to forecast its future values. This algorithm forecasts the behavior of time series based on similarity of pattern sequences. Initially, clustering is done with the labeling of samples from database. The labels associated with samples are then used for forecasting the future behaviour of time series data. The further technical details and references regarding PSF are discussed in Vignette.
Reproducible, programmatic retrieval of survey datasets from the Pew Research Center.
Build piecewise exponential survival model for study design (planning) and event/timeline prediction.
Explore the world of R graphics with fun and interesting plot functions! Use make_LED() to create dynamic LED screens, draw interconnected rings with Olympic_rings(), and make festive Chinese couplets with chunlian(). Unleash your creativity and turn data into exciting visuals!