Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fetches the PREDICTS database and relevant metadata from the Data Portal at the Natural History Museum, London <https://data.nhm.ac.uk>. Data were collated from over 400 existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from sites around the world. These data are described in Hudson et al. (2013) <doi:10.1002/ece3.2579>.
Includes functions for keyword search of pdf files. There is also a wrapper that includes searching of all files within a single directory.
Means to predict process flow, such as process outcome, next activity, next time, remaining time, and remaining trace. Off-the-shelf predictive models based on the concept of Transformers are provided, as well as multiple way to customize the models. This package is partly based on work described in Zaharah A. Bukhsh, Aaqib Saeed, & Remco M. Dijkman. (2021). "ProcessTransformer: Predictive Business Process Monitoring with Transformer Network" <doi:10.48550/arXiv.2104.00721>.
Quasi likelihood-based methods for estimating linear and log-linear Poisson Network Autoregression models with p lags and covariates. Tools for testing the linearity versus several non-linear alternatives. Tools for simulation of multivariate count distributions, from linear and non-linear PNAR models, by using a specific copula construction. References include: Armillotta, M. and K. Fokianos (2023). "Nonlinear network autoregression". Annals of Statistics, 51(6): 2526--2552. <doi:10.1214/23-AOS2345>. Armillotta, M. and K. Fokianos (2024). "Count network autoregression". Journal of Time Series Analysis, 45(4): 584--612. <doi:10.1111/jtsa.12728>. Armillotta, M., Tsagris, M. and Fokianos, K. (2024). "Inference for Network Count Time Series with the R Package PNAR". The R Journal, 15/4: 255--269. <doi:10.32614/RJ-2023-094>.
Run Queries against the API of Piwik Pro <https://developers.piwik.pro/en/latest/custom_reports/http_api/http_api.html>. The result is a tibble.
An interface to the API for Pan-STARRS1', a data archive of the PS1 wide-field astronomical survey. The package allows access to the PS1 catalog and to the PS1 images. (see <https://outerspace.stsci.edu/display/PANSTARRS/> for more information). You can use it to plan astronomical observations, make guidance pictures, find magnitudes in five broadband filters (g, r, i, z, y) and more.
Estimates corrected Procrustean correlation between matrices for removing overfitting effect. Coissac Eric and Gonindard-Melodelima Christelle (2019) <doi:10.1101/842070>.
An open-access tool/framework to download, validate, visualize, and analyze multi-source precipitation data. More information and an example of implementation can be found in Vargas Godoy and Markonis (2023, <doi:10.1016/j.envsoft.2023.105711>).
This package performs pathway enrichment analysis using a voting-based framework that integrates CpGâ gene regulatory information from expression quantitative trait methylation (eQTM) data. For a grid of top-ranked CpGs and filtering thresholds, gene sets are generated and refined using an entropy-based pruning strategy that balances information richness, stability, and probe bias correction. In particular, gene lists dominated by genes with disproportionately high numbers of CpG mappings are penalized to mitigate active probe biasâ a common artifact in methylation data analysis. Enrichment results across parameter combinations are then aggregated using a voting scheme, prioritizing pathways that are consistently recovered under diverse settings and robust to parameter perturbations.
Visualizes panel data. It has three main functionalities: (1) it plots the treatment status and missing values in a panel dataset; (2) it visualizes the temporal dynamics of a main variable of interest; (3) it depicts the bivariate relationships between a treatment variable and an outcome variable either by unit or in aggregate. For details, see <doi:10.18637/jss.v107.i07>.
This package implements Procrustes cross-validation method for Principal Component Analysis, Principal Component Regression and Partial Least Squares regression models. S. Kucheryavskiy (2023) <doi:10.1016/j.aca.2023.341096>.
The base R data.frame, like any vector, is copied upon modification. This behavior is at odds with that of GUIs and interactive graphics. To rectify this, plumbr provides a mutable, dynamic tabular data model. Models may be chained together to form the complex plumbing necessary for sophisticated graphical interfaces. Also included is a general framework for linking datasets; an typical use case would be a linked brush.
Evaluate or optimize designs for nonlinear mixed effects models using the Fisher Information matrix. Methods used in the package refer to Mentré F, Mallet A, Baccar D (1997) <doi:10.1093/biomet/84.2.429>, Retout S, Comets E, Samson A, Mentré F (2007) <doi:10.1002/sim.2910>, Bazzoli C, Retout S, Mentré F (2009) <doi:10.1002/sim.3573>, Le Nagard H, Chao L, Tenaillon O (2011) <doi:10.1186/1471-2148-11-326>, Combes FP, Retout S, Frey N, Mentré F (2013) <doi:10.1007/s11095-013-1079-3> and Seurat J, Tang Y, Mentré F, Nguyen TT (2021) <doi:10.1016/j.cmpb.2021.106126>.
This package provides a function PWI() that calculates prize winner indices based on bibliometric data is provided. The default is the Derek de Solla Price Memorial Medal'. Users can provide recipients of other prizes.
Provide easy methods to translate pieces of text. Functions send requests to translation services online.
Translating messages in R packages is managed using the po top-level directory and the gettext program. This package provides some helper functions for building this support in R packages, e.g. common validation & I/O tasks.
Pupillometric data collected using SR Research Eyelink eye trackers requires significant preprocessing. This package contains functions for preparing pupil dilation data for visualization and statistical analysis. Specifically, it provides a pipeline of functions which aid in data validation, the removal of blinks/artifacts, downsampling, and baselining, among others. Additionally, plotting functions for creating grand average and conditional average plots are provided. See the vignette for samples of the functionality. The package is designed for handling data collected with SR Research Eyelink eye trackers using Sample Reports created in SR Research Data Viewer.
Providing functions to diagnose and make inferences from various linear models, such as those obtained from aov', lm', glm', gls', lme', lmer', glmmTMB and semireg'. Inferences include predicted means and standard errors, contrasts, multiple comparisons, permutation tests, adjusted R-square and graphs.
Shrinkage estimator for polygenic risk prediction (PRS) models based on summary statistics of genome-wide association (GWA) studies. Based upon the methods and original PANPRS package as found in: Chen, Chatterjee, Landi, and Shi (2020) <doi:10.1080/01621459.2020.1764849>.
This package provides functions for obtaining the density, random deviates and maximum likelihood estimates of the Poisson lognormal distribution and the bivariate Poisson lognormal distribution.
This package provides a system to increase the efficiency of dynamic web-scraping with RSelenium by leveraging parallel processing. You provide a function wrapper for your RSelenium scraping routine with a set of inputs, and parsel runs it in several browser instances. Chunked input processing as well as error catching and logging ensures seamless execution and minimal data loss, even when unforeseen RSelenium errors occur. You can additionally build safe scraping functions with minimal coding by utilizing constructor functions that act as wrappers around RSelenium methods.
Permute treatment labels for taxa and environmental gradients to generate an empirical distribution of change points. This is an extension for the TITAN2 package <https://cran.r-project.org/package=TITAN2>.
Download and generate summaries for the rodent, plant, ant, and weather data from the Portal Project. Portal is a long-term (and ongoing) experimental monitoring site in the Chihuahuan desert. The raw data files can be found at <https://github.com/weecology/portaldata>.
This package provides function for performing Bayesian survival regression using Horseshoe prior in the accelerated failure time model with log normal assumption in order to achieve high dimensional pan-cancer variable selection as developed in Maity et. al. (2019) <doi:10.1111/biom.13132>.