Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computation and visualization of Bayesian Regions of Evidence to systematically evaluate the sensitivity of a superiority or non-inferiority claim against any prior assumption of its assessors. Methodological details are elaborated by Hoefler and Miller (<https://osf.io/jxnsv>). Besides generic functions, the package also provides an intuitive Shiny application, that can be run in local R environments.
Draw horizontal histograms, color scattered points by 3rd dimension, enhance date- and log-axis plots, zoom in X11 graphics, trace errors and warnings, use the unit hydrograph in a linear storage cascade, convert lists to data.frames and arrays, fit multiple functions.
Simulating synthetic clumped isotope dataset, fitting linear regression models under Bayesian and non-Bayesian frameworks, and generating temperature reconstructions for the same two approaches. Please note that models implemented in this package are described in Roman-Palacios et al. (2021) <doi:10.1002/essoar.10507995.1>.
This package provides a random forest variant block forest ('BlockForest') tailored to the prediction of binary, survival and continuous outcomes using block-structured covariate data, for example, clinical covariates plus measurements of a certain omics data type or multi-omics data, that is, data for which measurements of different types of omics data and/or clinical data for each patient exist. Examples of different omics data types include gene expression measurements, mutation data and copy number variation measurements. Block forest are presented in Hornung & Wright (2019). The package includes four other random forest variants for multi-omics data: RandomBlock', BlockVarSel', VarProb', and SplitWeights'. These were also considered in Hornung & Wright (2019), but performed worse than block forest in their comparison study based on 20 real multi-omics data sets. Therefore, we recommend to use block forest ('BlockForest') in applications. The other random forest variants can, however, be consulted for academic purposes, for example, in the context of further methodological developments. Reference: Hornung, R. & Wright, M. N. (2019) Block Forests: random forests for blocks of clinical and omics covariate data. BMC Bioinformatics 20:358. <doi:10.1186/s12859-019-2942-y>.
Inference on the marginal model of the mixed effect model with the Box-Cox transformation and on the model median differences between treatment groups for longitudinal randomized clinical trials. These statistical methods are proposed by Maruo et al. (2017) <doi:10.1002/sim.7279>.
Estimates survival and mortality with covariates from census or capture-recapture/recovery data in a Bayesian framework when many individuals are of unknown age. It includes tools for data checking, model diagnostics and outputs such as life-tables and plots, as described in Colchero, Jones, and Rebke (2012) <doi:10.1111/j.2041-210X.2012.00186.x> and Colchero et al. (2021) <doi:10.1038/s41467-021-23894-3>.
Build and use B-splines for interpolation and regression. In case of regression, equality constraints as well as monotonicity and/or positivity of B-spline weights can be imposed. Moreover, knot positions can be on regular grid or be part of optimized parameters too (in addition to the spline weights). For this end, bspline is able to calculate Jacobian of basis vectors as function of knot positions. User is provided with functions calculating spline values at arbitrary points. These functions can be differentiated and integrated to obtain B-splines calculating derivatives/integrals at any point. B-splines of this package can simultaneously operate on a series of curves sharing the same set of knots. bspline is written with concern about computing performance that's why the basis and Jacobian calculation is implemented in C++. The rest is implemented in R but without notable impact on computing speed.
Download stats reported from the BioConductor.org stats website.
This package provides functions to create and select graphical themes for the base plotting system. Contains: 1) several custom pre-made themes 2) mechanism for creating new themes by making persistent changes to the graphical parameters of base plots.
This package contains all the necessary tools to process audio recordings of various formats (e.g., WAV, WAC, MP3, ZC), filter noisy files, display audio signals, detect and extract automatically acoustic features for further analysis such as classification.
Functionality for reliability estimates. For unidimensional tests: Coefficient alpha, Guttman's lambda-2/-4/-6, the Greatest lower bound and coefficient omega_u ('unidimensional') in a Bayesian and a frequentist version. For multidimensional tests: omega_t (total) and omega_h (hierarchical). The results include confidence and credible intervals, the probability of a coefficient being larger than a cutoff, and a check for the factor models, necessary for the omega coefficients. The method for the Bayesian unidimensional estimates, except for omega_u, is sampling from the posterior inverse Wishart for the covariance matrix based measures (see Murphy', 2007, <https://groups.seas.harvard.edu/courses/cs281/papers/murphy-2007.pdf>. The Bayesian omegas (u, t, and h) are obtained by Gibbs sampling from the conditional posterior distributions of (1) the single factor model, (2) the second-order factor model, (3) the bi-factor model, (4) the correlated factor model ('Lee', 2007, <doi:10.1002/9780470024737>).
This package provides a collection of S4 classes which implements different methods to estimate and deal with densities in bounded domains. That is, densities defined within the interval [lower.limit, upper.limit], where lower.limit and upper.limit are values that can be set by the user.
Carry out Bayesian estimation and forecasting for a variety of stochastic mortality models using vague prior distributions. Models supported include numerous well-established approaches introduced in the actuarial and demographic literature, such as the Lee-Carter (1992) <doi:10.1080/01621459.1992.10475265>, the Cairns-Blake-Dowd (2009) <doi:10.1080/10920277.2009.10597538>, the Li-Lee (2005) <doi:10.1353/dem.2005.0021>, and the Plat (2009) <doi:10.1016/j.insmatheco.2009.08.006> models. The package is designed to analyse stratified mortality data structured as a 3-dimensional array of dimensions p à A à T (strata à age à year). Stratification can represent factors such as cause of death, country, deprivation level, sex, geographic region, insurance product, marital status, socioeconomic group, or smoking behavior. While the primary focus is on analysing stratified data (p > 1), the package can also handle mortality data that are not stratified (p = 1). Model selection via the Deviance Information Criterion (DIC) is supported.
This package provides a Bayesian regression model for discrete response, where the conditional distribution is modelled via a discrete Weibull distribution. This package provides an implementation of Metropolis-Hastings and Reversible-Jumps algorithms to draw samples from the posterior. It covers a wide range of regularizations through any two parameter prior. Examples are Laplace (Lasso), Gaussian (ridge), Uniform, Cauchy and customized priors like a mixture of priors. An extensive visual toolbox is included to check the validity of the results as well as several measures of goodness-of-fit.
Subgroup analyses are routinely performed in clinical trial analyses. From a methodological perspective, two key issues of subgroup analyses are multiplicity (even if only predefined subgroups are investigated) and the low sample sizes of subgroups which lead to highly variable estimates, see e.g. Yusuf et al (1991) <doi:10.1001/jama.1991.03470010097038>. This package implements subgroup estimates based on Bayesian shrinkage priors, see Carvalho et al (2019) <https://proceedings.mlr.press/v5/carvalho09a.html>. In addition, estimates based on penalized likelihood inference are available, based on Simon et al (2011) <doi:10.18637/jss.v039.i05>. The corresponding shrinkage based forest plots address the aforementioned issues and can complement standard forest plots in practical clinical trial analyses.
This package provides a method to filter correlation and covariance matrices by averaging bootstrapped filtered hierarchical clustering and boosting. See Ch. Bongiorno and D. Challet, Covariance matrix filtering with bootstrapped hierarchies (2020) <arXiv:2003.05807> and Ch. Bongiorno and D. Challet, Reactive Global Minimum Variance Portfolios with k-BAHC covariance cleaning (2020) <arXiv:2005.08703>.
This package provides a collection of functions for structure learning of causal networks and estimation of joint causal effects from observational Gaussian data. Main algorithm consists of a Markov chain Monte Carlo scheme for posterior inference of causal structures, parameters and causal effects between variables. References: F. Castelletti and A. Mascaro (2021) <doi:10.1007/s10260-021-00579-1>, F. Castelletti and A. Mascaro (2022) <doi:10.48550/arXiv.2201.12003>.
This package provides functions for training extreme gradient boosting model using propensity score A-learning and weight-learning methods. For further details, see Liu et al. (2024) <doi:10.1093/bioinformatics/btae592>.
This package provides a C++ library for Bayesian modeling, with an emphasis on Markov chain Monte Carlo. Although boom contains a few R utilities (mainly plotting functions), its primary purpose is to install the BOOM C++ library on your system so that other packages can link against it.
Enables a user to consume the BambooHR API endpoints using R. The actual URL of the API will depend on your company domain, and will be handled by the package automatically once you setup the config file. The API documentation can be found here <https://documentation.bamboohr.com/docs>.
Inflammation can affect many micronutrient biomarkers and can thus lead to incorrect diagnosis of individuals and to over- or under-estimate the prevalence of deficiency in a population. Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) is a multi-agency and multi-country partnership designed to improve the interpretation of nutrient biomarkers in settings of inflammation and to generate context-specific estimates of risk factors for anemia (Suchdev (2016) <doi:10.3945/an.115.010215>). In the past few years, BRINDA published a series of papers to provide guidance on how to adjust micronutrient biomarkers, retinol binding protein, serum retinol, serum ferritin by Namaste (2020), soluble transferrin receptor (sTfR), serum zinc, serum and Red Blood Cell (RBC) folate, and serum B-12, using inflammation markers, alpha-1-acid glycoprotein (AGP) and/or C-Reactive Protein (CRP) by Namaste (2020) <doi:10.1093/ajcn/nqaa141>, Rohner (2017) <doi:10.3945/ajcn.116.142232>, McDonald (2020) <doi:10.1093/ajcn/nqz304>, and Young (2020) <doi:10.1093/ajcn/nqz303>. The BRINDA inflammation adjustment method mainly focuses on Women of Reproductive Age (WRA) and Preschool-age Children (PSC); however, the general principle of the BRINDA method might apply to other population groups. The BRINDA R package is a user-friendly all-in-one R package that uses a series of functions to implement BRINDA adjustment method, as described above. The BRINDA R package will first carry out rigorous checks and provides users guidance to correct data or input errors (if they occur) prior to inflammation adjustments. After no errors are detected, the package implements the BRINDA inflammation adjustment for up to five micronutrient biomarkers, namely retinol-binding-protein, serum retinol, serum ferritin, sTfR, and serum zinc (when appropriate), using inflammation indicators of AGP and/or CRP for various population groups. Of note, adjustment for serum and RBC folate and serum B-12 is not included in the R package, since evidence shows that no adjustment is needed for these micronutrient biomarkers in either WRA or PSC groups (Young (2020) <doi:10.1093/ajcn/nqz303>).
Computation of large covariance matrices having a block structure up to a permutation of their columns and rows from a small number of samples with respect to the dimension of the matrix. The method is described in the paper Perrot-Dockès et al. (2019) <arXiv:1806.10093>.
Bayesian kernel machine regression (from the bkmr package) is a Bayesian semi-parametric generalized linear model approach under identity and probit links. There are a number of functions in this package that extend Bayesian kernel machine regression fits to allow multiple-chain inference and diagnostics, which leverage functions from the future', rstan', and coda packages. Reference: Bobb, J. F., Henn, B. C., Valeri, L., & Coull, B. A. (2018). Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. ; <doi:10.1186/s12940-018-0413-y>.
This package implements two algorithms of detecting Bull and Bear markets in stock prices: the algorithm of Pagan and Sossounov (2002, <doi:10.1002/jae.664>) and the algorithm of Lunde and Timmermann (2004, <doi:10.1198/073500104000000136>). The package also contains functions for printing out the dating of the Bull and Bear states of the market, the descriptive statistics of the states, and functions for plotting the results. For the sake of convenience, the package includes the monthly and daily data on the prices (not adjusted for dividends) of the S&P 500 stock market index.