Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An implementation of prediction intervals for overdispersed count data, for overdispersed binomial data and for linear random effects models.
This package provides a low-level package for hosting persistence data. It is part of the TDAverse suite of packages, which is designed to provide a collection of packages for enabling machine learning and data science tasks using persistent homology. Implements a class for hosting persistence data, a number of coercers from and to already existing and used data structures from other packages and functions to compute distances between persistence diagrams. A formal definition and study of bottleneck and Wasserstein distances can be found in Bubenik, Scott and Stanley (2023) <doi:10.1007/s41468-022-00103-8>. Their implementation in phutil relies on the C++ Hera library developed by Kerber, Morozov and Nigmetov (2017) <doi:10.1145/3064175>.
Data and examples from meta-analyses in psychology research.
This package provides functions and datasets to accompany J. Albert and J. Hu, "Probability and Bayesian Modeling", CRC Press, (2019, ISBN: 1138492566).
Calculate and optimize dynamic performance ratings of association football teams competing in matches, in accordance with the method used in the research paper "Determining the level of ability of football teams by dynamic ratings based on the relative discrepancies in scores between adversaries", by Constantinou and Fenton (2013) <doi:10.1515/jqas-2012-0036> This dynamic rating system has proven to provide superior results for predicting association football outcomes.
Seq2seq time-feature analysis based on variational model, with a wide range of distributions available for the latent variable.
This package performs demographic, bifurcation and evolutionary analysis of physiologically structured population models, which is a class of models that consistently translates continuous-time models of individual life history to the population level. A model of individual life history has to be implemented specifying the individual-level functions that determine the life history, such as development and mortality rates and fecundity. M.A. Kirkilionis, O. Diekmann, B. Lisser, M. Nool, B. Sommeijer & A.M. de Roos (2001) <doi:10.1142/S0218202501001264>. O.Diekmann, M.Gyllenberg & J.A.J.Metz (2003) <doi:10.1016/S0040-5809(02)00058-8>. A.M. de Roos (2008) <doi:10.1111/j.1461-0248.2007.01121.x>.
Prepare pharmacokinetic/pharmacodynamic (PK/PD) data for PK/PD analyses. This package provides functions to standardize infusion and bolus dose data while linking it to drug level or concentration data.
Screens and sorts phylogenetic trees in both traditional and extended Newick format. Allows for the fast and flexible screening (within a tree) of Exclusive clades that comprise only the target taxa and/or Non- Exclusive clades that includes a defined portion of non-target taxa.
Parametric bootstrap (PB) has been used for three-way ANOVA model with unequal group variances.
Automated pain scoring from paw withdrawal tracking data. Based on Jones et al. (2020) "A machine-vision approach for automated pain measurement at millisecond timescales" <doi:10.7554/eLife.57258>.
Compute and tune some positive definite and sparse covariance estimators.
Perform flexible simulation studies using one or multiple computer cores. The package is set up to be usable on high-performance clusters in addition to being run locally, see examples on <https://github.com/SachaEpskamp/parSim>.
This package contains sixteen moisture sorption isotherm models, which evaluate the fitness of adsorption and desorption curves for further understanding of the relationship between moisture content and water activity. Fitness evaluation is conducted through parameter estimation and error analysis. Moreover, graphical representation, hysteresis area estimation, and isotherm classification through the equation of Blahovec & Yanniotis (2009) <doi:10.1016/j.jfoodeng.2008.08.007> which is based on the classification system introduced by Brunauer et. al. (1940) <doi:10.1021/ja01864a025> are also included for the visualization of models and hysteresis.
Download and generate summaries for the rodent, plant, ant, and weather data from the Portal Project. Portal is a long-term (and ongoing) experimental monitoring site in the Chihuahuan desert. The raw data files can be found at <https://github.com/weecology/portaldata>.
An R6 class to set up, run, monitor, collate, and debug large simulation studies comprising many small independent replications and treatment configurations. Parallel processing, reproducibility, fault- and error-tolerance, and ability to resume an interrupted or timed-out simulation study are built in.
This package provides a framework for building enterprise, scalable and UI-standardized shiny applications. It brings enhanced features such as bootstrap v4 <https://getbootstrap.com/docs/4.0/getting-started/introduction/>, additional and enhanced shiny modules, customizable UI features, as well as an enhanced application file organization paradigm. This update allows developers to harness the ability to build powerful applications and enriches the shiny developers experience when building and maintaining applications.
Computes optimal changepoint models using the Poisson likelihood for non-negative count data, subject to the PeakSeg constraint: the first change must be up, second change down, third change up, etc. For more info about the models and algorithms, read "Constrained Dynamic Programming and Supervised Penalty Learning Algorithms for Peak Detection" <https://jmlr.org/papers/v21/18-843.html> by TD Hocking et al.
This package creates a data frame with the residuals of partial regressions of the main explanatory variable and the variable of interest. This method follows the Frisch-Waugh-Lovell theorem, as explained in Lovell (2008) <doi:10.3200/JECE.39.1.88-91>.
It allows the user to determine sample sizes, select probabilistic samples, make estimates of different parameters for the total finite population and in studio domains, using the main design drawings.
Extracts features from amplification curve data of quantitative Polymerase Chain Reactions (qPCR) according to Pabinger et al. 2014 <doi:10.1016/j.bdq.2014.08.002> for machine learning purposes. Helper functions prepare the amplification curve data for processing as functional data (e.g., Hausdorff distance) or enable the plotting of amplification curve classes (negative, ambiguous, positive). The hookreg() and hookregNL() functions of Burdukiewicz et al. (2018) <doi:10.1016/j.bdq.2018.08.001> can be used to predict amplification curves with an hook effect-like curvature. The pcrfit_single() function can be used to extract features from an amplification curve.
Multi-group (dynamical) structural equation models in combination with confirmatory network models from cross-sectional, time-series and panel data <doi:10.31234/osf.io/8ha93>. Allows for confirmatory testing and fit as well as exploratory model search.
Calculates the periodogram of a time series, maximum-likelihood fits an Ornstein-Uhlenbeck state space (OUSS) null model and evaluates the statistical significance of periodogram peaks against the OUSS null hypothesis. The OUSS is a parsimonious model for stochastically fluctuating variables with linear stabilizing forces, subject to uncorrelated measurement errors. Contrary to the classical white noise null model for detecting cyclicity, the OUSS model can account for temporal correlations typically occurring in ecological and geological time series. Citation: Louca, Stilianos and Doebeli, Michael (2015) <doi:10.1890/14-0126.1>.
This package provides a suite of empirical Bayes methods to use in pharmacovigilance. Contains various model fitting and post-processing functions. For more details see Tan et al. (2025) <doi:10.48550/arXiv.2502.09816>, <doi:10.48550/arXiv.2512.01057>; Koenker and Mizera (2014) <doi:10.1080/01621459.2013.869224>; Efron (2016) <doi:10.1093/biomet/asv068>.