Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Bindings for Poisson regression models for use with the parsnip package. Models include simple generalized linear models, Bayesian models, and zero-inflated Poisson models (Zeileis, Kleiber, and Jackman (2008) <doi:10.18637/jss.v027.i08>).
Given an arbitrary set of spatial regions and road networks, generate a set of representative points, or pseudohouseholds, that can be used for travel burden analysis. Parallel processing is supported.
An implementation of the parameter cascade method in Ramsay, J. O., Hooker,G., Campbell, D., and Cao, J. (2007) for estimating ordinary differential equation models with missing or complete observations. It combines smoothing method and profile estimation to estimate any non-linear dynamic system. The package also offers variance estimates for parameters of interest based on either bootstrap or Delta method.
This package provides high-level API and a wide range of options to create stunning, publication-quality plots effortlessly. It is built upon ggplot2 and other plotting packages, and is designed to be easy to use and to work seamlessly with ggplot2 objects. It is particularly useful for creating complex plots with multiple layers, facets, and annotations. It also provides a set of functions to create plots for specific types of data, such as Venn diagrams, alluvial diagrams, and phylogenetic trees. The package is designed to be flexible and customizable, and to work well with the ggplot2 ecosystem. The API can be found at <https://pwwang.github.io/plotthis/reference/index.html>.
This package provides functions for generating pseudo-random numbers that follow a uniform distribution [0,1]. Randomness tests were conducted using the National Institute of Standards and Technology test suite<https://csrc.nist.gov/pubs/sp/800/22/r1/upd1/final>, along with additional tests. The sequence generated depends on the initial values and parameters. The package includes a linear congruence map as the decision map and three chaotic maps to generate the pseudo-random sequence, which follow a uniform distribution. Other distributions can be generated from the uniform distribution using the Inversion Principle Method and BOX-Muller transformation. Small perturbations in seed values result in entirely different sequences of numbers due to the sensitive nature of the maps being used. The chaotic nature of the maps helps achieve randomness in the generator. Additionally, the generator is capable of producing random bits.
An assortment of functions that could be useful in analyzing data from psychophysical experiments. It includes functions for calculating d from several different experimental designs, links for m-alternative forced-choice (mafc) data to be used with the binomial family in glm (and possibly other contexts) and self-Start functions for estimating gamma values for CRT screen calibrations.
Calculates a comprehensive list of features from profile hidden Markov models (HMMs) of proteins. Adapts and ports features for use with HMMs instead of Position Specific Scoring Matrices, in order to take advantage of more accurate multiple sequence alignment by programs such as HHBlits Remmert et al. (2012) <DOI:10.1038/nmeth.1818> and HMMer Eddy (2011) <DOI:10.1371/journal.pcbi.1002195>. Features calculated by this package can be used for protein fold classification, protein structural class prediction, sub-cellular localization and protein-protein interaction, among other tasks. Some examples of features extracted are found in Song et al. (2018) <DOI:10.3390/app8010089>, Jin & Zhu (2021) <DOI:10.1155/2021/8629776>, Lyons et al. (2015) <DOI:10.1109/tnb.2015.2457906> and Saini et al. (2015) <DOI:10.1016/j.jtbi.2015.05.030>.
The rgl implementation of plot3D functions.
Computes the D', Wn, and conditional asymmetric linkage disequilibrium (ALD) measures for pairs of genetic loci. Performs these linkage disequilibrium (LD) calculations on phased genotype data recorded using Genotype List (GL) String or columnar formats. Alternatively, generates expectation-maximization (EM) estimated haplotypes from phased data, or performs LD calculations on EM estimated haplotypes. Performs sign tests comparing LD values for phased and unphased datasets, and generates heat-maps for each LD measure. Described by Osoegawa et al. (2019a) <doi:10.1016/j.humimm.2019.01.010>, and Osoegawa et. al. (2019b) <doi:10.1016/j.humimm.2019.05.018>.
This package provides functions for causal structure learning and causal inference using graphical models. The main algorithms for causal structure learning are PC (for observational data without hidden variables), FCI and RFCI (for observational data with hidden variables), and GIES (for a mix of data from observational studies (i.e. observational data) and data from experiments involving interventions (i.e. interventional data) without hidden variables). For causal inference the IDA algorithm, the Generalized Backdoor Criterion (GBC), the Generalized Adjustment Criterion (GAC) and some related functions are implemented. Functions for incorporating background knowledge are provided.
Estimate large covariance matrices in approximate factor models by thresholding principal orthogonal complements.
Preparing a scanner data set for price dynamics calculations (data selecting, data classification, data matching, data filtering). Computing bilateral and multilateral indexes. For details on these methods see: Diewert and Fox (2020) <doi:10.1080/07350015.2020.1816176>, BiaÅ ek (2019) <doi:10.2478/jos-2019-0014> or BiaÅ ek (2020) <doi:10.2478/jos-2020-0037>.
Set of tools for reading, writing and transforming spatial and seasonal data, model selection and specific statistical tests for ecologists. It includes functions to interpolate regular positions of points between landmarks, to discretize polylines into regular point positions, link distant observations to points and convert a bounding box in a spatial object. It also provides miscellaneous functions for field ecologists such as spatial statistics and inference on diversity indexes, writing data.frame with Chinese characters.
This package provides tools for interacting with data from experiments done in microtiter plates. Easily read in plate-shaped data and convert it to tidy format, combine plate-shaped data with tidy data, and view tidy data in plate shape.
The Penn World Table provides purchasing power parity and national income accounts converted to international prices for 189 countries for some or all of the years 1950-2010.
Implementation of assumption-lean and data-adaptive post-prediction inference (POPInf), for valid and efficient statistical inference based on data predicted by machine learning. See Miao, Miao, Wu, Zhao, and Lu (2023) <arXiv:2311.14220>.
This package provides a RStudio addin allowing to paste the content of the clipboard as a comment block or as roxygen lines. This is very useful to insert an example in the roxygen block.
Allows the user to convert PDF tables to formats more amenable to analysis ('.csv', .xml', or .xlsx') by wrapping the PDFTables API. In order to use the package, the user needs to sign up for an API account on the PDFTables website (<https://pdftables.com/pdf-to-excel-api>). The package works by taking a PDF file as input, uploading it to PDFTables, and returning a file with the extracted data.
Bayesian toolbox for quantitative proteomics. In particular, this package provides functions to generate synthetic datasets, execute Bayesian differential analysis methods, and display results as, described in the associated article Marie Chion and Arthur Leroy (2023) <arXiv:2307.08975>.
Implementation of propensity clustering and decomposition as described in Ranola et al. (2013) <doi:10.1186/1752-0509-7-21>. Propensity decomposition can be viewed on the one hand as a generalization of the eigenvector-based approximation of correlation networks, and on the other hand as a generalization of random multigraph models and conformity-based decompositions.
This package provides functions for modeling, comparing, and visualizing photosynthetic light response curves using established mechanistic and empirical models like the rectangular hyperbola Michaelis-Menton based models ((eq1 (Baly (1935) <doi:10.1098/rspb.1935.0026>)) (eq2 (Kaipiainenn (2009) <doi:10.1134/S1021443709040025>)) (eq3 (Smith (1936) <doi:10.1073/pnas.22.8.504>))), hyperbolic tangent based models ((eq4 (Jassby & Platt (1976) <doi:10.4319/LO.1976.21.4.0540>)) (eq5 (Abe et al. (2009) <doi:10.1111/j.1444-2906.2008.01619.x>))), the non-rectangular hyperbola model (eq6 (Prioul & Chartier (1977) <doi:10.1093/oxfordjournals.aob.a085354>)), exponential based models ((eq8 (Webb et al. (1974) <doi:10.1007/BF00345747>)), (eq9 (Prado & de Moraes (1997) <doi:10.1007/BF02982542>))), and finally the Ye model (eq11 (Ye (2007) <doi:10.1007/s11099-007-0110-5>)). Each of these nonlinear least squares models are commonly used to express photosynthetic response under changing light conditions and has been well supported in the literature, but distinctions in each mathematical model represent moderately different assumptions about physiology and trait relationships which ultimately produce different calculated functional trait values. These models were all thoughtfully discussed and curated by Lobo et al. (2013) <doi:10.1007/s11099-013-0045-y> to express the importance of selecting an appropriate model for analysis, and methods were established in Davis et al. (in review) to evaluate the impact of analytical choice in phylogenetic analysis of the function-valued traits. Gas exchange data on 28 wild sunflower species from Davis et al.are included as an example data set here.
Visualizes the coverage depth of a complete plastid genome as well as the equality of its inverted repeat regions in relation to the circular, quadripartite genome structure and the location of individual genes. For more information, please see Gruenstaeudl and Jenke (2020) <doi:10.1186/s12859-020-3475-0>.
Parametric bootstrap (PB) has been used for three-way ANOVA model with unequal group variances.
Utilities for the Pareto, piecewise Pareto and generalized Pareto distribution that are useful for reinsurance pricing. In particular, the package provides a non-trivial algorithm that can be used to match the expected losses of a tower of reinsurance layers with a layer-independent collective risk model. The theoretical background of the matching algorithm and most other methods are described in Ulrich Riegel (2018) <doi:10.1007/s13385-018-0177-3>.