Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a doubly robust precision medicine approach to fit, cross-validate and visualize prediction models for the conditional average treatment effect (CATE). It implements doubly robust estimation and semiparametric modeling approach of treatment-covariate interactions as proposed by Yadlowsky et al. (2020) <doi:10.1080/01621459.2020.1772080>.
This package implements an efficient and powerful Bayesian approach for sparse high-dimensional linear regression. It uses minimal prior assumptions on the parameters through plug-in empirical Bayes estimates of hyperparameters. An efficient Parameter-Expanded Expectation-Conditional-Maximization (PX-ECM) algorithm estimates maximum a posteriori (MAP) values of regression parameters and variable selection probabilities. The PX-ECM results in a robust computationally efficient coordinate-wise optimization, which adjusts for the impact of other predictor variables. The E-step is motivated by the popular two-group approach to multiple testing. The result is a PaRtitiOned empirical Bayes Ecm (PROBE) algorithm applied to sparse high-dimensional linear regression, implemented using one-at-a-time or all-at-once type optimization. More information can be found in McLain, Zgodic, and Bondell (2022) <arXiv:2209.08139>.
The PBIB designs are important type of incomplete block designs having wide area of their applications for example in agricultural experiments, in plant breeding, in sample surveys etc. This package constructs various series of PBIB designs and assists in checking all the necessary conditions of PBIB designs and the association scheme on which these designs are based on. It also assists in calculating the efficiencies of PBIB designs with any number of associate classes. The package also constructs Youden-m square designs which are Row-Column designs for the two-way elimination of heterogeneity. The incomplete columns of these Youden-m square designs constitute PBIB designs. With the present functionality, the package will be of immense importance for the researchers as it will help them to construct PBIB designs, to check if their PBIB designs and association scheme satisfy various necessary conditions for the existence, to calculate the efficiencies of PBIB designs based on any association scheme and to construct Youden-m square designs for the two-way elimination of heterogeneity. R. C. Bose and K. R. Nair (1939) <http://www.jstor.org/stable/40383923>.
The gradual release of active substances from packaging can enhance food preservation by maintaining high concentrations of polyphenols and antioxidants for a period of 72 hrs. To assess the effectiveness of packaging materials that serve as carriers for antioxidants, it is crucial to model the diffusivity of the active agents. Understanding this diffusivity helps evaluate the packaging's capacity to prolong the shelf life of food items. The process of migration, which encompasses diffusion, dissolution, and reaching equilibrium, facilitates the transfer of low molecular weight compounds from the packaging into food simulants. The rate at which these active compounds are released from the packaging is typically analysed using food simulants under conditions outlined in European food packaging regulations (Ramos et al., 2014).
Calculate seat apportionment for legislative bodies with various methods. The algorithms include divisor or highest averages methods (e.g. Jefferson, Webster or Adams), largest remainder methods and biproportional apportionment. Gaffke, N. & Pukelsheim, F. (2008) <doi:10.1016/j.mathsocsci.2008.01.004> Oelbermann, K. F. (2016) <doi:10.1016/j.mathsocsci.2016.02.003>.
Eco-phylogenetic and community phylogenetic analyses. Keeps community ecological and phylogenetic data matched up and comparable using comparative.comm objects. Wrappers for common community phylogenetic indices ('pez.shape', pez.evenness', pez.dispersion', and pez.dissimilarity metrics). Implementation of Cavender-Bares (2004) correlation of phylogenetic and ecological matrices ('fingerprint.regression'). Phylogenetic Generalised Linear Mixed Models (PGLMMs; pglmm') following Ives & Helmus (2011) and Rafferty & Ives (2013). Simulation of null assemblages, traits, and phylogenies ('scape', sim.meta.comm').
This package provides functions and example data to teach and increase the reproducibility of the methods and code underlying the Propensity to Cycle Tool (PCT), a research project and web application hosted at <https://www.pct.bike/>. For an academic paper on the methods, see Lovelace et al (2017) <doi:10.5198/jtlu.2016.862>.
Implementation of the automatic shift detection method for Brownian Motion (BM) or Ornsteinâ Uhlenbeck (OU) models of trait evolution on phylogenies. Some tools to handle equivalent shifts configurations are also available. See Bastide et al. (2017) <doi:10.1111/rssb.12206> and Bastide et al. (2018) <doi:10.1093/sysbio/syy005>.
This package provides functionality for quality control processing and statistical analysis of mass spectrometry (MS) omics data, in particular proteomic (either at the peptide or the protein level), lipidomic, and metabolomic data, as well as RNA-seq based count data and nuclear magnetic resonance (NMR) data. This includes data transformation, specification of groups that are to be compared against each other, filtering of features and/or samples, data normalization, data summarization (correlation, PCA), and statistical comparisons between defined groups. Implements methods described in: Webb-Robertson et al. (2014) <doi:10.1074/mcp.M113.030932>. Webb-Robertson et al. (2011) <doi:10.1002/pmic.201100078>. Matzke et al. (2011) <doi:10.1093/bioinformatics/btr479>. Matzke et al. (2013) <doi:10.1002/pmic.201200269>. Polpitiya et al. (2008) <doi:10.1093/bioinformatics/btn217>. Webb-Robertson et al. (2010) <doi:10.1021/pr1005247>.
Creation of patient profile visualizations for exploration, diagnostic or monitoring purposes during a clinical trial. These static visualizations display a patient-specific overview of the evolution during the trial time frame of parameters of interest (as laboratory, ECG, vital signs), presence of adverse events, exposure to a treatment; associated with metadata patient information, as demography, concomitant medication. The visualizations can be tailored for specific domain(s) or endpoint(s) of interest. Visualizations are exported into patient profile report(s) or can be embedded in custom report(s).
Design and implementation of Percentile-based Shewhart Control Charts for continuous data. Faraz (2019) <doi:10.1002/qre.2384>.
Identifies the entries with patterned responses for psychometric scales. The patterns included in the package are identical (a, a, a), ascending (a, b, c), descending (c, b, a), alternative (a, b, a, b / a, b, c, a, b, c).
Identification of the most appropriate pharmacotherapy for each patient based on genomic alterations is a major challenge in personalized oncology. PANACEA is a collection of personalized anti-cancer drug prioritization approaches utilizing network methods. The methods utilize personalized "driverness" scores from driveR to rank drugs, mapping these onto a protein-protein interaction network. The "distance-based" method scores each drug based on these scores and distances between drugs and genes to rank given drugs. The "RWR" method propagates these scores via a random-walk with restart framework to rank the drugs. The methods are described in detail in Ulgen E, Ozisik O, Sezerman OU. 2023. PANACEA: network-based methods for pharmacotherapy prioritization in personalized oncology. Bioinformatics <doi:10.1093/bioinformatics/btad022>.
Fit penalized splines mixed-effects models (a special case of additive models) for large longitudinal datasets. The package includes a psme() function that (1) relies on package mgcv for constructing population and subject smooth functions as penalized splines, (2) transforms the constructed additive model to a linear mixed-effects model, (3) exploits package lme4 for model estimation and (4) backtransforms the estimated linear mixed-effects model to the additive model for interpretation and visualization. See Pedersen et al. (2019) <doi:10.7717/peerj.6876> and Bates et al. (2015) <doi:10.18637/jss.v067.i01> for an introduction. Unlike the gamm() function in mgcv', the psme() function is fast and memory-efficient, able to handle datasets with millions of observations.
Anomaly detection method based on the paper "Truth will out: Departure-based process-level detection of stealthy attacks on control systems" from Wissam Aoudi, Mikel Iturbe, and Magnus Almgren (2018) <DOI:10.1145/3243734.3243781>. Also referred to the following implementation: <https://github.com/rahulrajpl/PyPASAD>.
The goal of pak is to make package installation faster and more reliable. In particular, it performs all HTTP operations in parallel, so metadata resolution and package downloads are fast. Metadata and package files are cached on the local disk as well. pak has a dependency solver, so it finds version conflicts before performing the installation. This version of pak supports CRAN, Bioconductor and GitHub packages as well.
Make statistical inference on the probability of being in response, the duration of response, and the cumulative response rate up to a given time point. The method can be applied to analyze phase II randomized clinical trials with the endpoints being time to treatment response and time to progression or death.
Authentication, user administration, hosting, and additional infrastructure for shiny apps. See <https://polished.tech> for additional documentation and examples.
Simulate pedigree, genetic merits and phenotypes with random/non-random matings followed by random/non-random selection with different intensities and patterns in males and females. Genotypes can be simulated for a given pedigree, or an appended pedigree to an existing pedigree with genotypes. Mrode, R. A. (2005) <ISBN:9780851989969, 0851989969>; Nilforooshan, M.A. (2022) <doi:10.37496/rbz5120210131>.
Smoothing splines with penalties on order m derivatives.
The use of overparameterization is proposed with combinatorial analysis to test a broader spectrum of possible ARIMA models. In the selection of ARIMA models, the most traditional methods such as correlograms or others, do not usually cover many alternatives to define the number of coefficients to be estimated in the model, which represents an estimation method that is not the best. The popstudy package contains several tools for statistical analysis in demography and time series based in Shryock research (Shryock et. al. (1980) <https://books.google.co.cr/books?id=8Oo6AQAAMAAJ>).
Consider a linear predictive regression setting with a potentially large set of candidate predictors. This work is concerned with detecting the presence of out of sample predictability based on out of sample mean squared error comparisons given in Gonzalo and Pitarakis (2023) <doi:10.1016/j.ijforecast.2023.10.005>.
Sensitivity and power analysis, for calculating statistics describing pedigrees from wild populations, and for visualizing pedigrees.
Automate pharmacokinetic/pharmacodynamic bioanalytical procedures based on best practices and regulatory recommendations. The package impose regulatory constrains and sanity checking for common bioanalytical procedures. Additionally, PKbioanalysis provides a relational infrastructure for plate management and injection sequence.