Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of functions for modelling mutations in pedigrees with marker data, as used e.g. in likelihood computations with microsatellite data. Implemented models include equal, proportional and stepwise models, as well as random models for experimental work, and custom models allowing the user to apply any valid mutation matrix. Allele lumping is done following the lumpability criteria of Kemeny and Snell (1976), ISBN:0387901922.
Several person-fit statistics (PFSs; Meijer and Sijtsma, 2001, <doi:10.1177/01466210122031957>) are offered. These statistics allow assessing whether individual response patterns to tests or questionnaires are (im)plausible given the other respondents in the sample or given a specified item response theory model. Some PFSs apply to dichotomous data, such as the likelihood-based PFSs (lz, lz*) and the group-based PFSs (personal biserial correlation, caution index, (normed) number of Guttman errors, agreement/disagreement/dependability statistics, U3, ZU3, NCI, Ht). PFSs suitable to polytomous data include extensions of lz, U3, and (normed) number of Guttman errors.
This package provides software to facilitate the design, testing, and operation of computer models. It focuses particularly on tools that make it easy to construct and edit a customized graphical user interface ('GUI'). Although our simplified GUI language depends heavily on the R interface to the Tcl/Tk package, a user does not need to know Tcl/Tk'. Examples illustrate models built with other R packages, including PBSmapping', PBSddesolve', and BRugs'. A complete user's guide PBSmodelling-UG.pdf shows how to use this package effectively.
This package provides a grammar of graphics framework built on base graphics. It provides a bbplot object and a + operator to incrementally compose plots from data, aesthetic mappings and layers, then render them using the base plotting system. The package includes common geometric layers (points, lines, segments, bars, histograms, boxplots and tiles), scales for color and other aesthetics, legends, faceting, themes, and significance annotations.
This package provides methods for spatial predictive modeling, especially for spatial distribution models. This includes algorithms for model fitting and prediction, as well as methods for model evaluation.
Simple method of purging independent variables of mediating effects. First, regress the direct variable on the indirect variable. Then, used the stored residuals as the new purged (direct) variable in the updated specification. This purging process allows for use of a new direct variable uncorrelated with the indirect variable. Please cite the method and/or package using Waggoner, Philip D. (2018) <doi:10.1177/1532673X18759644>.
This package provides tools to show and draw image pixels using HTML widgets and Shiny applications. It can be used to visualize the MNIST dataset for handwritten digit recognition or to create new image recognition datasets.
Visualizes panel data. It has three main functionalities: (1) it plots the treatment status and missing values in a panel dataset; (2) it visualizes the temporal dynamics of a main variable of interest; (3) it depicts the bivariate relationships between a treatment variable and an outcome variable either by unit or in aggregate. For details, see <doi:10.18637/jss.v107.i07>.
This package provides functions to measure Alpha, Beta and Gamma Proximity to Irreplaceability. The methods for Alpha and Beta irreplaceability were first described in: Baisero D., Schuster R. & Plumptre A.J. Redefining and Mapping Global Irreplaceability. Conservation Biology 2021;1-11. <doi:10.1111/cobi.13806>.
Clustering analysis for sparse microbiome data, based on a Poisson hurdle model.
The Penn World Table 10.x (<https://www.rug.nl/ggdc/productivity/pwt/>) provides information on relative levels of income, output, input, and productivity for 183 countries between 1950 and 2019.
This package provides a simple way to add page numbers to base/ggplot/lattice graphics.
It is often advantageous to test a hypothesis more than once in the context of propensity score analysis (Rosenbaum, 2012) <doi:10.1093/biomet/ass032>. The functions in this package facilitate bootstrapping for propensity score analysis (PSA). By default, bootstrapping using two classification tree methods (using rpart and ctree functions), two matching methods (using Matching and MatchIt packages), and stratification with logistic regression. A framework is described for users to implement additional propensity score methods. Visualizations are emphasized for diagnosing balance; exploring the correlation relationships between bootstrap samples and methods; and to summarize results.
Clustering is unsupervised and exploratory in nature. Yet, it can be performed through penalized regression with grouping pursuit. In this package, we provide two algorithms for fitting the penalized regression-based clustering (PRclust) with non-convex grouping penalties, such as group truncated lasso, MCP and SCAD. One algorithm is based on quadratic penalty and difference convex method. Another algorithm is based on difference convex and ADMM, called DC-ADD, which is more efficient. Generalized cross validation and stability based method were provided to select the tuning parameters. Rand index, adjusted Rand index and Jaccard index were provided to estimate the agreement between estimated cluster memberships and the truth.
R interface to PRIMME <https://www.cs.wm.edu/~andreas/software/>, a C library for computing a few eigenvalues and their corresponding eigenvectors of a real symmetric or complex Hermitian matrix, or generalized Hermitian eigenproblem. It can also compute singular values and vectors of a square or rectangular matrix. PRIMME finds largest, smallest, or interior singular/eigenvalues and can use preconditioning to accelerate convergence. General description of the methods are provided in the papers Stathopoulos (2010, <doi:10.1145/1731022.1731031>) and Wu (2017, <doi:10.1137/16M1082214>). See citation("PRIMME") for details.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 Household questionnaire data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of SDG monitoring, as the survey produces information on 32 global SDG indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using Probability Proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household (<http://www.mics.unicef.org/surveys>).
An implementation of a non-parametric statistical model using a parallelised Monte Carlo sampling scheme. The method implemented in this package allows non-parametric inference to be regularized for small sample sizes, while also being more accurate than approximations such as variational Bayes. The concentration parameter is an effective sample size parameter, determining the faith we have in the model versus the data. When the concentration is low, the samples are close to the exact Bayesian logistic regression method; when the concentration is high, the samples are close to the simplified variational Bayes logistic regression. The method is described in full in the paper Lyddon, Walker, and Holmes (2018), "Nonparametric learning from Bayesian models with randomized objective functions" <arXiv:1806.11544>.
This package provides functions for graph-based multiple-sample testing and visualization of microbiome data, in particular data stored in phyloseq objects. The tests are based on those described in Friedman and Rafsky (1979) <http://www.jstor.org/stable/2958919>, and the tests are described in more detail in Callahan et al. (2016) <doi:10.12688/f1000research.8986.1>.
This package provides functionality to support data preparation and exploration for palaeobiological analyses, improving code reproducibility and accessibility. The wider aim of palaeoverse is to bring the palaeobiological community together to establish agreed standards. The package currently includes functionality for data cleaning, binning (time and space), exploration, summarisation and visualisation. Reference datasets (i.e. Geological Time Scales <https://stratigraphy.org/chart>) and auxiliary functions are also provided. Details can be found in: Jones et al., (2023) <doi: 10.1111/2041-210X.14099>.
Interface to the Pharmpy pharmacometrics library. The Reticulate package is used to interface Python from R.
This package provides a collection of software provides R support for ADMB (Automatic Differentiation Model Builder) and a GUI interface facilitates the conversion of ADMB template code to C code followed by compilation to a binary executable. Stand-alone functions can also be run by users not interested in clicking a GUI'.
Load the Just Another Gibbs Sampling (JAGS) module pexm'. The module provides the tools to work with the Piecewise Exponential (PE) distribution in a Bayesian model with the corresponding Markov Chain Monte Carlo algorithm (Gibbs Sampling) implemented via JAGS. Details about the module implementation can be found in Mayrink et al. (2021) <doi:10.18637/jss.v100.i08>.
Format and submit few-shot prompts to OpenAI's Large Language Models (LLMs). Designed to be particularly useful for text classification problems in the social sciences. Methods are described in Ornstein, Blasingame, and Truscott (2024) <https://joeornstein.github.io/publications/ornstein-blasingame-truscott.pdf>.
R's implementation of the JavaScript library path-to-regexp', it aims to provide R web frameworks features such as parameter handling among other URL path utilities.