Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We extend dplyr and fuzzyjoin join functions with features to preprocess the data, apply various data checks, and deal with conflicting columns.
This package provides functions for creating color palettes, visualizing palettes, modifying colors, and assigning colors for plotting.
This package implements (1) panel cointegration rank tests, (2) estimators for panel vector autoregressive (VAR) models, and (3) identification methods for panel structural vector autoregressive (SVAR) models as described in the accompanying vignette. The implemented functions allow to account for cross-sectional dependence and for structural breaks in the deterministic terms of the VAR processes. Among the large set of functions, particularly noteworthy are those that implement (1) the correlation-augmented inverse normal test on the cointegration rank by Arsova and Oersal (2021, <doi:10.1016/j.ecosta.2020.05.002>), (2) the two-step estimator for pooled cointegrating vectors by Breitung (2005, <doi:10.1081/ETC-200067895>), and (3) the pooled identification based on independent component analysis by Herwartz and Wang (2024, <doi:10.1002/jae.3044>).
You can use this program for 3 sets of categorical data for propensity score matching. Assume that the data has 3 different categorical variables. You can use it to perform propensity matching of baseline indicator groupings. The matching will make the differences in the baseline data smaller. This method was described by Alvaro Fuentes (2022) <doi:10.1080/00273171.2021.1925521>.
This package implements projected sparse Gaussian process Kriging ('Ingram et. al.', 2008, <doi:10.1007/s00477-007-0163-9>) as an additional method for the intamap package. More details on implementation ('Barillec et. al.', 2010, <doi:10.1016/j.cageo.2010.05.008>).
Village potential statistics (PODES) collects various information on village potential and challenges faced by villages in Indonesia. Information related to village potential includes economy, security, health, employment, communication and information, sports, entertainment, development, community empowerment, education, socio-culture, transportation in the village. Information related to challenges includes natural disasters, public health, environmental pollution, social problems and security disturbances that occur in the village.
This function plots a contour line with a user-defined probability and tightness of fit.
The PDE (Pdf Data Extractor) allows the extraction of information and tables optionally based on search words from PDF (Portable Document Format) files and enables the visualization of the results, both by providing a convenient user-interface.
This package provides a simple implementation of the Predictive Information Index ('PII').
Implementation of assumption-lean and data-adaptive post-prediction inference (POPInf), for valid and efficient statistical inference based on data predicted by machine learning. See Miao, Miao, Wu, Zhao, and Lu (2023) <arXiv:2311.14220>.
Carries out model-based clustering or classification using parsimonious Gaussian mixture models. McNicholas and Murphy (2008) <doi:10.1007/s11222-008-9056-0>, McNicholas (2010) <doi:10.1016/j.jspi.2009.11.006>, McNicholas and Murphy (2010) <doi:10.1093/bioinformatics/btq498>, McNicholas et al. (2010) <doi:10.1016/j.csda.2009.02.011>.
Explore the world of R graphics with fun and interesting plot functions! Use make_LED() to create dynamic LED screens, draw interconnected rings with Olympic_rings(), and make festive Chinese couplets with chunlian(). Unleash your creativity and turn data into exciting visuals!
Using the R package reticulate', this package creates an interface to the pysd toolset. The package provides an R interface to a number of pysd functions, and can read files in Vensim mdl format, and xmile format. The resulting simulations are returned as a tibble', and from that the results can be processed using dplyr and ggplot2'. The package has been tested using python3'.
An implementation of the Partition Of variation (POV) method as developed by Dr. Thomas A Little <https://thomasalittleconsulting.com> in 1993 for the analysis of semiconductor data for hard drive manufacturing. POV is based on sequential sum of squares and is an exact method that explains all observed variation. It quantitates both the between and within factor variation effects and can quantitate the influence of both continuous and categorical factors.
Estimate commonly used population genomic statistics and generate publication quality figures. PopGenHelpR uses vcf, geno (012), and csv files to generate output.
This package provides functions tailored for scientific and student communities involved in plant science research. Functionalities encompass estimation chlorophyll content according to Arnon (1949) <doi:10.1104/pp.24.1.1>, determination water potential of Polyethylene glycol(PEG)6000 as in Michel and Kaufmann (1973) <doi:10.1104/pp.51.5.914> and functions related to estimation of yield related indices like Abiotic tolerance index as given by Moosavi et al.(2008)<doi:10.22059/JDESERT.2008.27115>, Geometric mean productivity (GMP) by Fernandez (1992) <ISBN:92-9058-081-X>, Golden Mean by Moradi et al.(2012)<doi:10.14207/ejsd.2012.v1n3p543>, HAM by Schneider et al.(1997)<doi:10.2135/cropsci1997.0011183X003700010007x>,MPI and TOL by Hossain etal., (1990)<doi:10.2135/cropsci1990.0011183X003000030030x>, RDI by Fischer et al. (1979)<doi:10.1071/AR9791001>,SSI by Fisher et al.(1978)<doi:10.1071/AR9780897>, STI by Fernandez (1993)<doi:10.22001/wvc.72511>,YSI by Bouslama & Schapaugh (1984)<doi:10.2135/cropsci1984.0011183X002400050026x>, Yield index by Gavuzzi et al.(1997)<doi:10.4141/P96-130>.
Pivotal Tracker <https://www.pivotaltracker.com> is a project management software-as-a-service that provides a REST API. This package provides an R interface to that API, allowing you to query it and work with its responses.
This package provides a PEP, or Portable Encapsulated Project, is a dataset that subscribes to the PEP structure for organizing metadata. It is written using a simple YAML + CSV format, it is your one-stop solution to metadata management across data analysis environments. This package reads this standardized project configuration structure into R. Described in Sheffield et al. (2021) <doi:10.1093/gigascience/giab077>.
Creation of patient profile visualizations for exploration, diagnostic or monitoring purposes during a clinical trial. These static visualizations display a patient-specific overview of the evolution during the trial time frame of parameters of interest (as laboratory, ECG, vital signs), presence of adverse events, exposure to a treatment; associated with metadata patient information, as demography, concomitant medication. The visualizations can be tailored for specific domain(s) or endpoint(s) of interest. Visualizations are exported into patient profile report(s) or can be embedded in custom report(s).
This package implements the PRIDIT (Principal Component Analysis applied to RIDITs') scoring system described in Brockett et al. (2002) <doi:10.1111/1539-6975.00027>. Provides functions for ridit scoring originally developed by Bross (1958) <doi:10.2307/2527727>, calculating PRIDIT weights, and computing final PRIDIT scores for multivariate analysis of ordinal data.
This package implements the methods described in the paper, Witten (2011) Classification and Clustering of Sequencing Data using a Poisson Model, Annals of Applied Statistics 5(4) 2493-2518.
This package provides a suite of empirical Bayes methods to use in pharmacovigilance. Contains various model fitting and post-processing functions. For more details see Tan et al. (2025) <doi:10.48550/arXiv.2502.09816>, <doi:10.48550/arXiv.2512.01057>; Koenker and Mizera (2014) <doi:10.1080/01621459.2013.869224>; Efron (2016) <doi:10.1093/biomet/asv068>.
This package provides a toolbox for making R functions and capabilities more accessible to students and professionals from Epidemiology and Public Health related disciplines. Includes a function to report coefficients and confidence intervals from models using robust standard errors (when available), functions that expand ggplot2 plots and functions relevant for introductory papers in Epidemiology or Public Health. Please note that use of the provided data sets is for educational purposes only.
This package contains model fitting functions for linear and non-linear adsorption kinetic and diffusion models. Adsorption kinetics is used for characterizing the rate of solute adsorption and the time necessary for the adsorption process. Adsorption kinetics offers vital information on adsorption rate, adsorbent performance in response time, and mass transfer processes. In addition, diffusion models are included in the package as solute diffusion affects the adsorption kinetic experiments. This package consists of 20 adsorption and diffusion models, including Pseudo First Order (PFO), Pseudo Second Order (PSO), Elovich, and Weber-Morris model (commonly called the intraparticle model) stated by Plazinski et al. (2009) <doi:10.1016/j.cis.2009.07.009>. This package also contains a summary function where the statistical errors of each model are ranked for a more straightforward determination of the best fit model.