Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Enrichment analysis enables researchers to uncover mechanisms underlying a phenotype. However, conventional methods for enrichment analysis do not take into account protein-protein interaction information, resulting in incomplete conclusions. pathfindR is a tool for enrichment analysis utilizing active subnetworks. The main function identifies active subnetworks in a protein-protein interaction network using a user-provided list of genes and associated p values. It then performs enrichment analyses on the identified subnetworks, identifying enriched terms (i.e. pathways or, more broadly, gene sets) that possibly underlie the phenotype of interest. pathfindR also offers functionalities to cluster the enriched terms and identify representative terms in each cluster, to score the enriched terms per sample and to visualize analysis results. The enrichment, clustering and other methods implemented in pathfindR are described in detail in Ulgen E, Ozisik O, Sezerman OU. 2019. pathfindR': An R Package for Comprehensive Identification of Enriched Pathways in Omics Data Through Active Subnetworks. Front. Genet. <doi:10.3389/fgene.2019.00858>.
Spearman's rank correlation test with precomputed exact null distribution for n <= 22.
Create and customize interactive phylogenetic trees using the phylocanvas JavaScript library and the htmlwidgets package. These trees can be used directly from the R console, from RStudio', in Shiny apps, and in R Markdown documents. See <http://phylocanvas.org/> for more information on the phylocanvas library.
This package provides a collection of utilities and ggplot2 extensions to assist with visualisations in genomic epidemiology. This includes the phylepic chart, a visual combination of a phylogenetic tree and a matched epidemic curve. The included ggplot2 extensions such as date axes binned by week are relevant for other applications in epidemiology and beyond. The approach is described in Suster et al. (2024) <doi:10.1101/2024.04.02.24305229>.
Publish data sets, models, and other R objects, making it easy to share them across projects and with your colleagues. You can pin objects to a variety of "boards", including local folders (to share on a networked drive or with DropBox'), Posit Connect', AWS S3', and more.
This package provides tools for processing, analyzing, and visualizing spectral data collected from 3D laser-based scanning systems. Supports applications in agriculture, forestry, environmental monitoring, industrial quality control, and biomedical research. Enables evaluation of plant growth, productivity, resource efficiency, disease management, and pest monitoring. Includes statistical methods for extracting insights from multispectral and hyperspectral data and generating publication-ready visualizations. See Zieschank & Junker (2023) <doi:10.3389/fpls.2023.1141554> and Saric et al. (2022) <doi:10.1016/J.TPLANTS.2021.12.003> for related work.
Programmatic interface to the PhenoCam web services (<https://phenocam.nau.edu/webcam>). Allows for easy downloading of PhenoCam data directly to your R workspace or your computer and provides post-processing routines for consistent and easy timeseries outlier detection, smoothing and estimation of phenological transition dates. Methods for this package are described in detail in Hufkens et. al (2018) <doi:10.1111/2041-210X.12970>.
This package implements the phinterval vector class for representing time spans that may contain gaps (disjoint intervals) or be empty. This class generalizes the lubridate package's interval class to support vectorized set operations (intersection, union, difference, complement) that always return a valid time span, even when disjoint or empty intervals are created.
Computes the Owen's T function or the bivariate normal integral using one of the following: modified Euler's arctangent series, tetrachoric series, or Vasicek's series. For the methods, see Komelj, J. (2023) <doi:10.4236/ajcm.2023.134026> (or reprint <arXiv:2312.00011> with better typography) and Vasicek, O. A. (1998) <doi:10.21314/JCF.1998.015>.
Estimation, prediction, thresholding, transformation, and plotting for partially linear additive quantile regression. Intuitive functions for fitting and plotting partially linear additive quantile regression models. Uses and works with functions from the quantreg package.
This package provides tools from the domain of graph theory can be used to quantify the complexity and vulnerability to failure of a software package. That is the guiding philosophy of this package. pkgnet provides tools to analyze the dependencies between functions in an R package and between its imported packages. See the pkgnet website for vignettes and other supplementary information.
This package provides a method of clustering functional data using subregion information of the curves. It is intended to supplement the fda and fda.usc packages in functional data object clustering. It also facilitates the printing and plotting of the results in a tree format and limits the partitioning candidates into a specific set of subregions.
Free UK geocoding using data from Office for National Statistics. It is using several functions to get information about post codes, outward codes, reverse geocoding, nearest post codes/outward codes, validation, or randomly generate a post code. API wrapper around <https://postcodes.io>.
This package provides a shiny app that allows to access and use the INVEKOS API for field polygons in Austria. API documentation is available at <https://gis.lfrz.gv.at/api/geodata/i009501/ogc/features/v1/>.
This package provides tools for Bayesian power analysis and assurance calculations using the statistical frameworks of brms and INLA'. Includes simulation-based approaches, support for multiple decision rules (direction, threshold, ROPE), sequential designs, and visualisation helpers. Methods are based on Kruschke (2014, ISBN:9780124058880) "Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan", O'Hagan & Stevens (2001) <doi:10.1177/0272989X0102100307> "Bayesian Assessment of Sample Size for Clinical Trials of Cost-Effectiveness", Kruschke (2018) <doi:10.1177/2515245918771304> "Rejecting or Accepting Parameter Values in Bayesian Estimation", Rue et al. (2009) <doi:10.1111/j.1467-9868.2008.00700.x> "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations", and Bürkner (2017) <doi:10.18637/jss.v080.i01> "brms: An R Package for Bayesian Multilevel Models using Stan".
This uses a mixed integer mathematical programming (MIP) approach for building and solving multi-action planning problems, where the goal is to find an optimal combination of management actions that abate threats, in an efficient way while accounting for spatial aspects. Thus, optimizing the connectivity and conservation effectiveness of the prioritized units and of the deployed actions. The package is capable of handling different commercial (gurobi, CPLEX) and non-commercial (symphony, CBC) MIP solvers. Gurobi optimization solver can be installed using comprehensive instructions in the gurobi installation vignette of the prioritizr package (available in <https://prioritizr.net/articles/gurobi_installation_guide.html>). Instead, CPLEX optimization solver can be obtain from IBM CPLEX web page (available here <https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio>). Additionally, the rcbc R package (available at <https://github.com/dirkschumacher/rcbc>) can be used to obtain solutions using the CBC optimization software (<https://github.com/coin-or/Cbc>). Methods used in the package refers to Salgado-Rojas et al. (2020) <doi:10.1016/j.ecolmodel.2019.108901>, Beyer et al. (2016) <doi:10.1016/j.ecolmodel.2016.02.005>, Cattarino et al. (2015) <doi:10.1371/journal.pone.0128027> and Watts et al. (2009) <doi:10.1016/j.envsoft.2009.06.005>. See the prioriactions website for more information, documentations and examples.
This package provides a shiny application for visualizing high-dimensional data using non-linear dimensionality reduction (NLDR) techniques such as t-SNE and UMAP. It provides an interactive platform to explore high-dimensional datasets, diagnose the quality of the embeddings using the quollr package, and compare different NLDR methods.
In causal mediation analysis with multiple causally ordered mediators, a set of path-specific effects are identified under standard ignorability assumptions. This package implements an imputation approach to estimating these effects along with a set of bias formulas for conducting sensitivity analysis (Zhou and Yamamoto <doi:10.31235/osf.io/2rx6p>). It contains two main functions: paths() for estimating path-specific effects and sens() for conducting sensitivity analysis. Estimation uncertainty is quantified using the nonparametric bootstrap.
This package provides a collection of functions for modelling mutations in pedigrees with marker data, as used e.g. in likelihood computations with microsatellite data. Implemented models include equal, proportional and stepwise models, as well as random models for experimental work, and custom models allowing the user to apply any valid mutation matrix. Allele lumping is done following the lumpability criteria of Kemeny and Snell (1976), ISBN:0387901922.
This package provides a set of palettes imported from Gimp distributed under GPL3 (<https://www.gimp.org/about/COPYING>), and Inkscape distributed under GPL2 (<https://inkscape.org/about/license/>).
This package provides tools for constructing detailed synthetic human populations from frequency tables. Add ages based on age groups and sex, create households, add students to education facilities, create employers, add employers to employees, and create interpersonal networks.
Implementation of the Phoenix and Phoenix-8 Sepsis Criteria as described in "Development and Validation of the Phoenix Criteria for Pediatric Sepsis and Septic Shock" by Sanchez-Pinto, Bennett, DeWitt, Russell et al. (2024) <doi:10.1001/jama.2024.0196> (Drs. Sanchez-Pinto and Bennett contributed equally to this manuscript; Dr. DeWitt and Mr. Russell contributed equally to the manuscript), "International Consensus Criteria for Pediatric Sepsis and Septic Shock" by Schlapbach, Watson, Sorce, Argent, et al. (2024) <doi:10.1001/jama.2024.0179> (Drs Schlapbach, Watson, Sorce, and Argent contributed equally) and the application note "phoenix: an R package and Python module for calculating the Phoenix pediatric sepsis score and criteria" by DeWitt, Russell, Rebull, Sanchez-Pinto, and Bennett (2024) <doi:10.1093/jamiaopen/ooae066>.
This package provides path_chain class and functions, which facilitates loading and saving directory structure in YAML configuration files via config package. The file structure you created during exploration can be transformed into legible section in the config file, and then easily loaded for further usage.
This package provides a shiny GUI that performs high dimensional cluster analysis. This tool performs data preparation, clustering and visualisation within a dynamic GUI. With interactive methods allowing the user to change settings all without having to to leave the GUI. An earlier version of this package was described in Laa and Valencia (2022) <doi:10.1140/epjp/s13360-021-02310-1>.