Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Interact with the Brandwatch API <https://developers.brandwatch.com/docs>. Allows you to authenticate to the API and obtain data for projects, queries, query groups tags and categories. Also allows you to directly obtain mentions and aggregate data for a specified query or query group.
This is an implementation of design methods for binomial reliability demonstration tests (BRDTs) with failure count data. The acceptance decision uncertainty of BRDT has been quantified and the impacts of the uncertainty on related reliability assurance activities such as reliability growth (RG) and warranty services (WS) are evaluated. This package is associated with the work from the published paper "Optimal Binomial Reliability Demonstration Tests Design under Acceptance Decision Uncertainty" by Suiyao Chen et al. (2020) <doi:10.1080/08982112.2020.1757703>.
This package provides functions to produce MCMC samples for posterior inference in semiparametric Bayesian discrete time competing risks recurrent events models and multistate models.
Resurrects the standard plot for shapes established by the base and graphics packages. This is suited to workflows that require plotting using the established and traditional idioms of plotting spatially coincident data where it belongs. This package depends on sf and only replaces the plot method.
Easy estimation of Bayesian multilevel mediation models with Stan.
Investigating and visualising Bayesian Additive Regression Tree (BART) (Chipman, H. A., George, E. I., & McCulloch, R. E. 2010) <doi:10.1214/09-AOAS285> model fits. We construct conventional plots to analyze a modelâ s performance and stability as well as create new tree-based plots to analyze variable importance, interaction, and tree structure. We employ Value Suppressing Uncertainty Palettes (VSUP) to construct heatmaps that display variable importance and interactions jointly using colour scale to represent posterior uncertainty. Our visualisations are designed to work with the most popular BART R packages available, namely BART Rodney Sparapani and Charles Spanbauer and Robert McCulloch 2021 <doi:10.18637/jss.v097.i01>, dbarts (Vincent Dorie 2023) <https://CRAN.R-project.org/package=dbarts>, and bartMachine (Adam Kapelner and Justin Bleich 2016) <doi:10.18637/jss.v070.i04>.
Allows the reenactment of the R programs used in the book Bayesian Essentials with R without further programming. R code being available as well, they can be modified by the user to conduct one's own simulations. Marin J.-M. and Robert C. P. (2014) <doi:10.1007/978-1-4614-8687-9>.
Enable users to evaluate long-term trends using a Generalized Additive Modeling (GAM) approach. The model development includes selecting a GAM structure to describe nonlinear seasonally-varying changes over time, incorporation of hydrologic variability via either a river flow or salinity, the use of an intervention to deal with method or laboratory changes suspected to impact data values, and representation of left- and interval-censored data. The approach has been applied to water quality data in the Chesapeake Bay, a major estuary on the east coast of the United States to provide insights to a range of management- and research-focused questions. Methodology described in Murphy (2019) <doi:10.1016/j.envsoft.2019.03.027>.
This package implements a novel Bayesian disaggregation framework that combines Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) dimension reduction of prior weight matrices with deterministic Bayesian updating rules. The method provides Markov Chain Monte Carlo (MCMC) free posterior estimation with built-in diagnostic metrics. While based on established PCA (Jolliffe, 2002) <doi:10.1007/b98835> and Bayesian principles (Gelman et al., 2013) <doi:10.1201/b16018>, the specific integration for economic disaggregation represents an original methodological contribution.
Bayesian approach to multidimensional scaling. The package consists of implementations of the methods of Oh and Raftery (2001) <doi:10.1198/016214501753208690>.
From a given data frame, this package learns its Bayesian network structure based on a selected score.
Unified and user-friendly framework for using new distributional representations of biosensors data in different statistical modeling tasks: regression models, hypothesis testing, cluster analysis, visualization, and descriptive analysis. Distributional representations are a functional extension of compositional time-range metrics and we have used them successfully so far in modeling glucose profiles and accelerometer data. However, these functional representations can be used to represent any biosensor data such as ECG or medical imaging such as fMRI. Matabuena M, Petersen A, Vidal JC, Gude F. "Glucodensities: A new representation of glucose profiles using distributional data analysis" (2021) <doi:10.1177/0962280221998064>.
Implementation of bivariate binomial, geometric, and Poisson distributions based on conditional specifications. The package also includes tools for data generation and goodness-of-fit testing for these three distribution families. For methodological details, see Ghosh, Marques, and Chakraborty (2025) <doi:10.1080/03610926.2024.2315294>, Ghosh, Marques, and Chakraborty (2023) <doi:10.1080/03610918.2021.2004419>, and Ghosh, Marques, and Chakraborty (2021) <doi:10.1080/02664763.2020.1793307>.
Bayesian inference under log-normality assumption must be performed very carefully. In fact, under the common priors for the variance, useful quantities in the original data scale (like mean and quantiles) do not have posterior moments that are finite (Fabrizi et al. 2012 <doi:10.1214/12-BA733>). This package allows to easily carry out a proper Bayesian inferential procedure by fixing a suitable distribution (the generalized inverse Gaussian) as prior for the variance. Functions to estimate several kind of means (unconditional, conditional and conditional under a mixed model) and quantiles (unconditional and conditional) are provided.
This package provides tools for the analysis of replication studies using Bayes factors (Pawel and Held, 2022) <doi:10.1111/rssb.12491>.
This package provides a comprehensive statistical analysis of the accuracy of blood pressure devices based on the method of AAMI/ANSI SP10 standards developed by the AAMI Sphygmomanometer Committee for indirect measurement of blood pressure, incorporated into IS0 81060-2. The bpAcc package gives the exact probability of accepting a device D derived from the join distribution of the sample standard deviation and a non-linear transformation of the sample mean for a specified sample size introduced by Chandel et al. (2023) and by the Association for the Advancement of Medical Instrumentation (2003, ISBN:1-57020-183-8).
This package provides a "Shiny"" web application for creating interactive Bayesian Network models, learning the structure and parameters of Bayesian networks, and utilities for classic network analysis.
Collection of functions, data sets and code examples for evaluations of field trials with the objective of equivalence assessment.
This package performs parametric mediation analysis using the Bayesian g-formula approach for binary and continuous outcomes. The methodology is based on Comment (2018) <doi:10.5281/zenodo.1285275> and a demonstration of its application can be found at Yimer et al. (2022) <doi:10.48550/arXiv.2210.08499>.
This package provides a client for retrieving data and metadata from major central bank APIs. It supports access to the Bundesbank SDMX Web Service API (<https://www.bundesbank.de/en/statistics/time-series-databases/help-for-sdmx-web-service/web-service-interface-data>), the Swiss National Bank Data Portal (<https://data.snb.ch/en>), the European Central Bank Data Portal API (<https://data.ecb.europa.eu/help/api/overview>), the Bank of England Interactive Statistical Database (<https://www.bankofengland.co.uk/boeapps/database>), the Banco de España API (<https://www.bde.es/webbe/en/estadisticas/recursos/api-estadisticas-bde.html>), the Banque de France Web Service (<https://webstat.banque-france.fr/en/pages/guide-migration-api/>), and Bank of Canada Valet API (<https://www.bankofcanada.ca/valet/docs>).
Allows Bayesian borrowing from a historical dataset for time-to- event data. A flexible baseline hazard function is achieved via a piecewise exponential likelihood with time varying split points and smoothing prior on the historic baseline hazards. The method is described in Scott and Lewin (2024) <doi:10.48550/arXiv.2401.06082>, and the software paper is in Axillus et al. (2024) <doi:10.48550/arXiv.2408.04327>.
Temporal Exponential Random Graph Models (TERGM) estimated by maximum pseudolikelihood with bootstrapped confidence intervals or Markov Chain Monte Carlo maximum likelihood. Goodness of fit assessment for ERGMs, TERGMs, and SAOMs. Micro-level interpretation of ERGMs and TERGMs. The methods are described in Leifeld, Cranmer and Desmarais (2018), JStatSoft <doi:10.18637/jss.v083.i06>.
Compare dissolution profiles with confidence interval of similarity factor f2 using bootstrap methodology as described in the literature, such as Efron and Tibshirani (1993, ISBN:9780412042317), Davison and Hinkley (1997, ISBN:9780521573917), and Shah et al. (1998) <doi:10.1023/A:1011976615750>. The package can also be used to simulate dissolution profiles based on mathematical modelling and multivariate normal distribution.
The Philippines frequently experiences tropical cyclones (called bagyo in the Filipino language) because of its geographical position. These cyclones typically bring heavy rainfall, leading to widespread flooding, as well as strong winds that cause significant damage to human life, crops, and property. Data on cyclones are collected and curated by the Philippine Atmospheric, Geophysical, and Astronomical Services Administration or PAGASA and made available through its website <https://bagong.pagasa.dost.gov.ph/tropical-cyclone/publications/annual-report>. This package contains Philippine tropical cyclones data in a machine-readable format. It is hoped that this data package provides an interesting and unique dataset for data exploration and visualisation.