Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Analytically calculates the operating characteristics of single-stage and two-stage basket trials with equal sample sizes using the power prior design by Baumann et al. (2024) <doi:10.48550/arXiv.2309.06988> and the design by Fujikawa et al. (2020) <doi:10.1002/bimj.201800404>.
This package implements functions for multi-class discriminant analysis using binary predictors, for corresponding variable selection, and for dichotomizing continuous data.
Implementation of the bootstrapping approach for the estimation of clustering stability and its application in estimating the number of clusters, as introduced by Yu et al (2016)<doi:10.1142/9789814749411_0007>. Implementation of the non-parametric bootstrap approach to assessing the stability of module detection in a graph, the extension for the selection of a parameter set that defines a graph from data in a way that optimizes stability and the corresponding visualization functions, as introduced by Tian et al (2021) <doi:10.1002/sam.11495>. Implemented out-of-bag stability estimation function and k-select Smin-based k-selection function as introduced by Liu et al (2022) <doi:10.1002/sam.11593>. Implemented ensemble clustering method based-on k-means clustering method, spectral clustering method and hierarchical clustering method.
This package performs goodness of fit test for the Birnbaum-Saunders distribution and provides the maximum likelihood estimate and the method-of-moments estimate. For more details, see Park and Wang (2013) <arXiv:2308.10150>. This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No. 2022R1A2C1091319, RS-2023-00242528).
Buckley-James regression for right-censoring survival data with high-dimensional covariates. Implementations for survival data include boosting with componentwise linear least squares, componentwise smoothing splines, regression trees and MARS. Other high-dimensional tools include penalized regression for survival data. See Wang and Wang (2010) <doi:10.2202/1544-6115.1550>.
Battery reduction is a method used in data reduction. It uses Gram-Schmidt orthogonal rotations to find out a subset of variables best representing the original set of variables.
Calculates business duration between two dates. This excluding weekends, public holidays and non-business hours.
This package provides functions developed within Breeding Insight to analyze diploid and polyploid breeding and genetic data. BIGr provides the ability to filter variant call format (VCF) files, extract single nucleotide polymorphisms (SNPs) from diversity arrays technology missing allele discovery count (DArT MADC) files, and manipulate genotype data for both diploid and polyploid species. It also serves as the core dependency for the BIGapp Shiny app, which provides a user-friendly interface for performing routine genotype analysis tasks such as dosage calling, filtering, principal component analysis (PCA), genome-wide association studies (GWAS), and genomic prediction. For more details about the included breedTools functions, see Funkhouser et al. (2017) <doi:10.2527/tas2016.0003>, and the updog output format, see Gerard et al. (2018) <doi:10.1534/genetics.118.301468>.
Fit Bayesian Gaussian graphical models. The methods are separated into two Bayesian approaches for inference: hypothesis testing and estimation. There are extensions for confirmatory hypothesis testing, comparing Gaussian graphical models, and node wise predictability. These methods were recently introduced in the Gaussian graphical model literature, including Williams (2019) <doi:10.31234/osf.io/x8dpr>, Williams and Mulder (2019) <doi:10.31234/osf.io/ypxd8>, Williams, Rast, Pericchi, and Mulder (2019) <doi:10.31234/osf.io/yt386>.
Generation of correlated artificial binary data.
The blocked weighted bootstrap (BBW) is an estimation technique for use with data from two-stage cluster sampled surveys in which either prior weighting (e.g. population-proportional sampling or PPS as used in Standardized Monitoring and Assessment of Relief and Transitions or SMART surveys) or posterior weighting (e.g. as used in rapid assessment method or RAM and simple spatial sampling method or S3M surveys) is implemented. See Cameron et al (2008) <doi:10.1162/rest.90.3.414> for application of bootstrap to cluster samples. See Aaron et al (2016) <doi:10.1371/journal.pone.0163176> and Aaron et al (2016) <doi:10.1371/journal.pone.0162462> for application of the blocked weighted bootstrap to estimate indicators from two-stage cluster sampled surveys.
An interface to the Briq API <https://briq.github.io>. Briq is a tool that aims to promote employee engagement by helping employees recognize and reward each other. Employees can praise and thank one another (for achieving a company goal, for example) by giving virtual credits (known as briqs or bqs') that can be redeemed for various rewards. The Briq API lets you create, read, update and delete users, user groups, transactions and messages. This package provides functions that simplify getting the users, user groups and transactions of your organization into R.
This package implements the methodological developments found in Hermes, van Heerwaarden, and Behrouzi (2024) <doi:10.48550/arXiv.2408.10558>, and allows for the statistical modeling of multi-attribute pairwise comparison data.
Four methods for mediation analysis with missing data: Listwise deletion, Pairwise deletion, Multiple imputation, and Two Stage Maximum Likelihood algorithm. For MI and TS-ML, auxiliary variables can be included. Bootstrap confidence intervals for mediation effects are obtained. The robust method is also implemented for TS-ML. Since version 1.4, bmem adds the capability to conduct power analysis for mediation models. Details about the methods used can be found in these articles. Zhang and Wang (2003) <doi:10.1007/s11336-012-9301-5>. Zhang (2014) <doi:10.3758/s13428-013-0424-0>.
Bayesian networks provide an intuitive framework for probabilistic reasoning and its graphical nature can be interpreted quite clearly. Graph based methods of machine learning are becoming more popular because they offer a richer model of knowledge that can be understood by a human in a graphical format. The bnviewer is an R Package that allows the interactive visualization of Bayesian Networks. The aim of this package is to improve the Bayesian Networks visualization over the basic and static views offered by existing packages.
Understanding the drivers of microbial diversity is an important frontier of microbial ecology, and investigating the diversity of samples from microbial ecosystems is a common step in any microbiome analysis. breakaway is the premier package for statistical analysis of microbial diversity. breakaway implements the latest and greatest estimates of species richness, described in Willis and Bunge (2015) <doi:10.1111/biom.12332>, Willis et al. (2017) <doi:10.1111/rssc.12206>, and Willis (2016) <arXiv:1604.02598>, as well as the most commonly used estimates, including the objective Bayes approach described in Barger and Bunge (2010) <doi:10.1214/10-BA527>.
An interface to the Bayesian Weighted Sums model implemented in RStan'. It estimates the summed effect of multiple, often moderately to highly correlated, continuous predictors. Its applications can be found in analysis of exposure mixtures. The model was proposed by Hamra, Maclehose, Croen, Kauffman, and Newschaffer (2021) <doi:10.3390/ijerph18041373>. This implementation includes an extension to model binary outcome.
Computation of the minimum sample size using the Average Coverage Criterion or the Average Length Criterion for estimating binomial proportions using beta prior distributions. For more details see Costa (2025) <DOI:10.1007/978-3-031-72215-8_14>.
It makes the creation of networks from sequences of RNA, with this is done the abstraction of characteristics of these networks with a methodology of threshold for the purpose of making a classification between the classes of the sequences. There are four data present in the BASiNET package, "sequences", "sequences2", "sequences-predict" and "sequences2-predict" with 11, 10, 11 and 11 sequences respectively. These sequences were taken from the data set used in the article (LI, Aimin; ZHANG, Junying; ZHOU, Zhongyin, 2014) <doi:10.1186/1471-2105-15-311>, these sequences are used to run examples. The BASiNET was published on Nucleic Acids Research, (ITO, Eric; KATAHIRA, Isaque; VICENTE, Fábio; PEREIRA, Felipe; LOPES, Fabrà cio, 2018) <doi:10.1093/nar/gky462>.
Perform seasonal adjustment and forecasting of weekly data. The package provides a user-friendly interface for computing seasonally adjusted estimates and forecasts of weekly time series and includes functions for the construction of country-specific prior adjustment variables, as well as diagnostic tools to assess the quality of the adjustments. The methodology is described in more detail in Ginker (2024) <doi:10.13140/RG.2.2.12221.44000>.
The goal of BayesPower is to provide tools for Bayesian sample size determination and power analysis across a range of common hypothesis testing scenarios using Bayes factors. The main function, BayesPower_BayesFactor(), launches an interactive shiny application for performing these analyses. The application also provides command-line code for reproducibility. Details of the methods are described in the tutorial by Wong, Pawel, and Tendeiro (2025) <doi:10.31234/osf.io/pgdac_v1>.
This package provides functions to scrape IQY calls to Bank of Mexico, downloading and ordering the data conveniently.
Highly efficient functions for estimating various rank (centrality) measures of nodes in bipartite graphs (two-mode networks). Includes methods for estimating HITS, CoHITS, BGRM, and BiRank with implementation primarily inspired by He et al. (2016) <doi:10.1109/TKDE.2016.2611584>. Also provides easy-to-use tools for efficiently estimating PageRank in one-mode graphs, incorporating or removing edge-weights during rank estimation, projecting two-mode graphs to one-mode, and for converting edgelists and matrices to sparseMatrix format. Best of all, the package's rank estimators can work directly with common formats of network data including edgelists (class data.frame, data.table, or tbl_df) and adjacency matrices (class matrix or dgCMatrix).
Bayesian adaptive randomization is also called outcome adaptive randomization, which is increasingly used in clinical trials.