Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for examining Rprof profile output.
Generates design matrix for analysing real paired comparisons and derived paired comparison data (Likert type items/ratings or rankings) using a loglinear approach. Fits loglinear Bradley-Terry model (LLBT) exploiting an eliminate feature. Computes pattern models for paired comparisons, rankings, and ratings. Some treatment of missing values (MCAR and MNAR). Fits latent class (mixture) models for paired comparison, rating and ranking patterns using a non-parametric ML approach.
This tool computes the probability of detection (POD) curve and the limit of detection (LOD), i.e. the number of copies of the target DNA sequence required to ensure a 95 % probability of detection (LOD95). Other quantiles of the LOD can be specified. This is a reimplementation of the mathematical-statistical modelling of the validation of qualitative polymerase chain reaction (PCR) methods within a single laboratory as provided by the commercial tool PROLab <http://quodata.de/>. The modelling itself has been described by Uhlig et al. (2015) <doi:10.1007/s00769-015-1112-9>.
This package provides the infrastructure to define and analyze the solutions of Partially Observable Markov Decision Process (POMDP) models. Interfaces for various exact and approximate solution algorithms are available including value iteration, point-based value iteration and SARSOP. Hahsler and Cassandra <doi:10.32614/RJ-2024-021>.
This package provides tools for calculating and viewing topological properties of phylogenetic trees.
Producing the time-dependent receiver operating characteristic (ROC) curve through parametric approaches. Tools for generating random data, fitting, predicting and check goodness of fit are prepared. The methods are developed from the theoretical framework of proportional hazard model and copula functions. Using this package, users can now simulate parametric time-dependent ROC and run experiment to understand the behavior of the curve under different scenario.
This package provides a broad-view perspective on data via linear mapping of data onto a radial coordinate system. The package contains functions to visualize the residual values of linear regression and Cartesian data in the defined radial scheme. See the pacviz documentation page for more information: <https://pacviz.sriley.dev/>.
Create sliders from left, right, top and bottom which may include any html or Shiny input or output.
Use the paged media properties in CSS and the JavaScript library paged.js to split the content of an HTML document into discrete pages. Each page can have its page size, page numbers, margin boxes, and running headers, etc. Applications of this package include books, letters, reports, papers, business cards, resumes, and posters.
Computes the All-Resolution Inference method in the permutation framework, i.e., simultaneous lower confidence bounds for the number of true discoveries. <doi:10.1002/sim.9725>.
This package provides a function to estimate panel-corrected standard errors. Data may contain balanced or unbalanced panels.
Analytical power calculations for GxE and GxG interactions for case-control studies of candidate genes and genome-wide association studies (GWAS). This includes power calculation for four two-step screening and testing procedures. It can also calculate power for GxE and GxG without any screening.
This package provides functionality for quality control processing and statistical analysis of mass spectrometry (MS) omics data, in particular proteomic (either at the peptide or the protein level), lipidomic, and metabolomic data, as well as RNA-seq based count data and nuclear magnetic resonance (NMR) data. This includes data transformation, specification of groups that are to be compared against each other, filtering of features and/or samples, data normalization, data summarization (correlation, PCA), and statistical comparisons between defined groups. Implements methods described in: Webb-Robertson et al. (2014) <doi:10.1074/mcp.M113.030932>. Webb-Robertson et al. (2011) <doi:10.1002/pmic.201100078>. Matzke et al. (2011) <doi:10.1093/bioinformatics/btr479>. Matzke et al. (2013) <doi:10.1002/pmic.201200269>. Polpitiya et al. (2008) <doi:10.1093/bioinformatics/btn217>. Webb-Robertson et al. (2010) <doi:10.1021/pr1005247>.
Probabilistic factor analysis for spatially-aware dimension reduction across multi-section spatial transcriptomics data with millions of spatial locations. More details can be referred to Wei Liu, et al. (2023) <doi:10.1101/2023.07.11.548486>.
This package provides tools for loading and processing passive acoustic data. Read in data that has been processed in Pamguard (<https://www.pamguard.org/>), apply a suite processing functions, and export data for reports or external modeling tools. Parameter calculations implement methods by Oswald et al (2007) <doi:10.1121/1.2743157>, Griffiths et al (2020) <doi:10.1121/10.0001229> and Baumann-Pickering et al (2010) <doi:10.1121/1.3479549>.
Collection of functions for working with multi-well microtitre plates, mainly 96, 384 and 1536 well plates.
Allows users to access the Oregon State Prism climate data (<https://prism.nacse.org/>). Using the web service API data can easily downloaded in bulk and loaded into R for spatial analysis. Some user friendly visualizations are also provided.
This package provides functions for landscape analysis and data retrieval. The package allows users to download environmental variables from global datasets (e.g., WorldClim, ESA WorldCover, Nighttime Lights), and to compute spatial and landscape metrics using a hexagonal grid system based on the H3 spatial index. It is useful for ecological modeling, biodiversity studies, and spatial data processing in landscape ecology. Fick and Hijmans (2017) <doi:10.1002/joc.5086>. Zanaga et al. (2022) <doi:10.5281/zenodo.7254221>. Uber Technologies Inc. (2022) "H3: Hexagonal hierarchical spatial index".
This package provides a multiple testing procedure for testing several groups of hypotheses is implemented. Linear dependency among the hypotheses within the same group is modeled by using hidden Markov Models. It is noted that a smaller p value does not necessarily imply more significance due to the dependency. A typical application is to analyze genome wide association studies datasets, where SNPs from the same chromosome are treated as a group and exhibit strong linear genomic dependency. See Wei Z, Sun W, Wang K, Hakonarson H (2009) <doi:10.1093/bioinformatics/btp476> for more details.
Computes the Patient-Reported Outcomes (PROs) Joint Contrast (PJC), a residual-based summary that captures information left over after accounting for the clinical Disease Activity index for Psoriatic Arthritis (cDAPSA). PROs (pain and patient global assessment) and joint counts (swollen and tender) are standardized, then each component is adjusted for standardized cDAPSA using natural spline coefficients that were derived from previously published models. The resulting residuals are standardized and combined using fixed principal component loadings, to yield a continuous PJC score and quartile groupings. This package provides a calculator for applying those published coefficients to new datasets; it does not itself estimate spline models or principal components.
This package provides functions for graph-based multiple-sample testing and visualization of microbiome data, in particular data stored in phyloseq objects. The tests are based on those described in Friedman and Rafsky (1979) <http://www.jstor.org/stable/2958919>, and the tests are described in more detail in Callahan et al. (2016) <doi:10.12688/f1000research.8986.1>.
Includes functions to wrap most endpoints of the PaleobioDB API and to visualize and process the obtained fossil data. The API documentation for the Paleobiology Database can be found at <https://paleobiodb.org/data1.2/>.
This package provides a suite of Propensity Score Predictive Inference (PSPI) methods to generalize treatment effects in trials to target populations. The package includes an existing model Bayesian Causal Forest (BCF) and four PSPI models (BCF-PS, FullBART, SplineBART, DSplineBART). These methods leverage Bayesian Additive Regression Trees (BART) to adjust for high-dimensional covariates and nonlinear associations, while SplineBART and DSplineBART further use propensity score based splines to address covariate shift between trial data and target population.
This is a wrapper for the Mercury Parser API. The Mercury Parser is a single API endpoint that takes a URL and gives you back the content reliably and easily. With just one API request, Mercury takes any web article and returns only the relevant content â headline, author, body text, relevant images and more â free from any clutter. Itâ s reliable, easy-to-use and free. See the webpage here: <https://mercury.postlight.com/>.