Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Clustering is unsupervised and exploratory in nature. Yet, it can be performed through penalized regression with grouping pursuit. In this package, we provide two algorithms for fitting the penalized regression-based clustering (PRclust) with non-convex grouping penalties, such as group truncated lasso, MCP and SCAD. One algorithm is based on quadratic penalty and difference convex method. Another algorithm is based on difference convex and ADMM, called DC-ADD, which is more efficient. Generalized cross validation and stability based method were provided to select the tuning parameters. Rand index, adjusted Rand index and Jaccard index were provided to estimate the agreement between estimated cluster memberships and the truth.
Interactive shiny application for working with Probability Distributions. Calculations and Graphs are provided.
Crop production systems are increasingly challenged by climate variability, resource limitations, and bioticâ abiotic stresses. In this context, stress tolerance indices and physiological trait estimators are essential tools to identify stable and superior genotypes, quantify yield stability under stress versus non-stress conditions, and understand plant adaptive responses. The PhysioIndexR package provides a unified framework to compute commonly used stress indices, physiological traits, and derived metrics that are critical in crop improvement, crop physiology, and other agricultural sciences. The package includes functions to calculate classical stress tolerance indices (See Lamba et al., 2023; <doi:10.1038/s41598-023-37634-8>) such as Tolerance (TOL), Stress Tolerance Index (STI), Stress Susceptibility Percentage Index (SSPI), Yield Index (YI), Yield Stability Index (YSI), Relative Stress Index (RSI), Mean Productivity (MP), Geometric Mean Productivity (GMP), Harmonic Mean (HM), Mean Relative Performance (MRP), and Percent Yield Reduction (PYR), along with a convenience wrapper all_indices() that returns all indices simultaneously. The function mfvst_from_indices() integrates these indices into a composite stress score using direction-aware membership values (0â 1 scaling) and also averaging, facilitating genotype ranking and selection (See Vinu et al., 2025; <doi:10.1007/s12355-025-01595-1>). The package also implements two novel composite functions: WMFVST(), which computes the Weighted Mean Membership Function Value for Stress Tolerance, and WASI(), which computes the Weighted Average Stress Index, both derived from membership function values (MFV) and raw stress index values, respectively. Beyond stress indices, the package provides functions for key physiological traits relevant to sugarcane and other crops: bmap() computes biomass accumulation and partitioning between leaf, cane/shoot, and root fractions. chl() estimates total chlorophyll content from Soil-Plant Analysis Development (SPAD) and Chlorophyll Content Index (CCI) values using validated quadratic models particularly for sugarcane (See Krishnapriya et al., 2020; <doi:10.37580/JSR.2019.2.9.150-163>). ctd() calculates canopy temperature depression (CTD) from ambient and canopy temperatures, an important indicator of transpiration efficiency. growth() computes key growth analysis parameters, including Leaf Area Index (LAI), Net Assimilation Rate (NAR), and Crop Growth Rate (CGR) across crop growth stages (See Watson, 1958; <doi:10.1093/oxfordjournals.aob.a083596>). ranking() provides flexible ranking utilities for genotype performance with multiple tie-handling and NA-placement options. Through these tools, the package enables researchers to: (i) quantify crop responses to stress environments, (ii) partition physiological components of yield, (iii) integrate multiple indices into composite metrics for genotype evaluation, and (iv) facilitate informed decision making in breeding pipelines, and plant physiology experiments. By combining physiology-based traits with quantitative stress indices, PhysioIndexR supports comprehensive crop evaluation and helps researchers identify multi-stress-resilient superior genotypes, thereby contributing to genetic improvement and ensuring sustainable production of food, fuel, and fibre in the era of limited resources and climate change.
Particle swarm optimization - a basic variant.
This package provides functions for the construction of Petri Nets. Petri Nets can be replayed by firing enabled transitions. Silent transitions will be hidden by the execution handler. Also includes functionalities for the visualization of Petri Nets and export of Petri Nets to PNML (Petri Net Markup Language) files.
An implementation of the pediatric complex chronic conditions (CCC) classification system using R and C++.
This package provides a collection of functions that can be used to estimate selection and complementarity effects, sensu Loreau & Hector (2001) <doi:10.1038/35083573>, even in cases where data are only available for a random subset of species (i.e. incomplete sample-level data). A full derivation and explanation of the statistical corrections used here is available in Clark et al. (2019) <doi:10.1111/2041-210X.13285>.
This package provides a variety of tools relevant to the analysis of marine soundscape data. There are tools for downloading AIS (automatic identification system) data from Marine Cadastre <https://hub.marinecadastre.gov>, connecting AIS data to GPS coordinates, plotting summaries of various soundscape measurements, and downloading relevant environmental variables (wind, swell height) from the National Center for Atmospheric Research data server <https://rda.ucar.edu/datasets/ds084.1/>. Most tools were developed to work well with output from Triton software, but can be adapted to work with any similar measurements.
Compilation and digitalization of the official registry of victims of state terrorism in Argentina during the last military coup. The original data comes from RUVTE-ILID (2019) <https://www.argentina.gob.ar/sitiosdememoria/ruvte/informe> and <http://basededatos.parquedelamemoria.org.ar/registros/>. The title, presentes, comes from present in spanish.
Computes the Danish Pesticide Load Indicator as described in Kudsk et al. (2018) <doi:10.1016/j.landusepol.2017.11.010> and Moehring et al. (2019) <doi:10.1016/j.scitotenv.2018.07.287> for pesticide use data. Additionally offers the possibility to directly link pesticide use data to pesticide properties given access to the Pesticide properties database (Lewis et al., 2016) <doi:10.1080/10807039.2015.1133242>.
Design and implementation of Percentile-based Shewhart Control Charts for continuous data. Faraz (2019) <doi:10.1002/qre.2384>.
Estimation, hypothesis tests, and variable selection in partially linear single-index models. Please see H. (2010) at <doi:10.1214/10-AOS835> for more details.
Learn optimal policies via doubly robust empirical welfare maximization over trees. Given doubly robust reward estimates, this package finds a rule-based treatment prescription policy, where the policy takes the form of a shallow decision tree that is globally (or close to) optimal.
This package provides a semi-parametric estimation method for the Cox model with left-truncated data using augmented information from the marginal of truncation times.
This package provides functions to automatically build a directory structure for a new R project. Using this structure, ProjectTemplate automates data loading, preprocessing, library importing and unit testing.
Descriptive statistics (mean rank, pairwise frequencies, and marginal matrix), Analytic Hierarchy Process models (with Saaty's and Koczkodaj's inconsistencies), probability models (Luce models, distance-based models, and rank-ordered logit models) and visualization with multidimensional preference analysis for ranking data are provided. Current, only complete rankings are supported by this package.
Spatial estimation of a prevalence surface or a relative risks surface, using data from a Demographic and Health Survey (DHS) or an analog survey, see Larmarange et al. (2011) <doi:10.4000/cybergeo.24606>.
Implementation of a KL-based (Kullback-Leibler) test for MCAR (Missing Completely At Random) in the context of missing data as introduced in Michel et al. (2021) <arXiv:2109.10150>.
Data sets for statistical inference modeling related to People Analytics. Contains various data sets from the book Handbook of Regression Modeling in People Analytics by Keith McNulty (2020).
This package provides functions and mined database from UniProt focusing on post-translational modifications to do single enrichment analysis (SEA) and protein set enrichment analysis (PSEA). Payman Nickchi, Uladzislau Vadadokhau, Mehdi Mirzaie, Marc Baumann, Amir Ata Saei, Mohieddin Jafari (2025) <doi:10.1002/pmic.202400238>.
Computes power and level tables for goodness-of-fit tests for the normal, Laplace, and uniform distributions. Generates output in LaTeX format to facilitate reporting and reproducibility. Explanatory graphs help visualize the statistical power of test statistics under various alternatives. For more details, see Lafaye De Micheaux and Tran (2016) <doi:10.18637/jss.v069.i03>.
Processing Chlorophyll Fluorescence & P700 Absorbance data generated by WALZ hardware. Four models are provided for the regression of Pi curves, which can be compared with each other in order to select the most suitable model for the data set. Control plots ensure the successful verification of each regression. Bundled output of alpha, ETRmax, Ik etc. enables fast and reliable further processing of the data.
Implementation of propensity clustering and decomposition as described in Ranola et al. (2013) <doi:10.1186/1752-0509-7-21>. Propensity decomposition can be viewed on the one hand as a generalization of the eigenvector-based approximation of correlation networks, and on the other hand as a generalization of random multigraph models and conformity-based decompositions.
Wrapper of the Petfinder API <https://www.petfinder.com/developers/v2/docs/> that implements methods for interacting with and extracting data from the Petfinder database. The Petfinder REST API allows access to the Petfinder database, one of the largest online databases of adoptable animals and animal welfare organizations across North America.