Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An extensible repository of accurate, up-to-date functions to score commonly used patient-reported outcome (PRO), quality of life (QOL), and other psychometric and psychological measures. PROscorer', together with the PROscorerTools package, is a system to facilitate the incorporation of PRO measures into research studies and clinical settings in a scientifically rigorous and reproducible manner. These packages and their vignettes are intended to help establish and promote best practices for scoring PRO and PRO-like measures in research. The PROscorer Instrument Descriptions vignette contains descriptions of each instrument scored by PROscorer', complete with references. These instrument descriptions are suitable for inclusion in formal study protocol documents, grant proposals, and manuscript Method sections. Each PROscorer function is composed of helper functions from the PROscorerTools package, and users are encouraged to contribute new functions to PROscorer'. More scoring functions are currently in development and will be added in future updates.
Gives the ability to automatically deploy a plumber API from R functions on DigitalOcean and other cloud-based servers.
This package provides a suite of functions that fit models that use PPM type priors for partitions. Models include hierarchical Gaussian and probit ordinal models with a (covariate dependent) PPM. If a covariate dependent product partition model is selected, then all the options detailed in Page, G.L.; Quintana, F.A. (2018) <doi:10.1007/s11222-017-9777-z> are available. If covariate values are missing, then the approach detailed in Page, G.L.; Quintana, F.A.; Mueller, P (2020) <doi:10.1080/10618600.2021.1999824> is employed. Also included in the package is a function that fits a Gaussian likelihood spatial product partition model that is detailed in Page, G.L.; Quintana, F.A. (2016) <doi:10.1214/15-BA971>, and multivariate PPM change point models that are detailed in Quinlan, J.J.; Page, G.L.; Castro, L.M. (2023) <doi:10.1214/22-BA1344>. In addition, a function that fits a univariate or bivariate functional data model that employs a PPM or a PPMx to cluster curves based on B-spline coefficients is provided.
Complex graphical representations of data are best explored using interactive elements. parcats adds interactive graphing capabilities to the easyalluvial package. The plotly.js parallel categories diagrams offer a good framework for creating interactive flow graphs that allow manual drag and drop sorting of dimensions and categories, highlighting single flows and displaying mouse over information. The plotly.js dependency is quite heavy and therefore is outsourced into a separate package.
Introducing a novel and updated database showcasing Peru's endemic plants. This meticulously compiled and revised botanical collection encompasses a remarkable assemblage of over 7,898 distinct species. The data for this resource was sourced from the work of Govaerts, R., Nic Lughadha, E., Black, N. et al., titled The World Checklist of Vascular Plants: A continuously updated resource for exploring global plant diversity', published in Sci Data 8, 215 (2021) <doi:10.1038/s41597-021-00997-6>.
This package provides simple methods to extract data portions from various objects. The relative portion size and the way the portion is selected can be chosen.
To take nested function calls and convert them to a more readable form using pipes from package magrittr'.
The package solves linear system of equations Ax=b by using Preconditioned Conjugate Gradient Algorithm where A is real symmetric positive definite matrix. A suitable preconditioner matrix may be provided by user. This can also be used to minimize quadratic function (x'Ax)/2-bx for unknown x.
This package provides functions that allow you to generate and compare power spectral density (PSD) plots given time series data. Fast Fourier Transform (FFT) is used to take a time series data, analyze the oscillations, and then output the frequencies of these oscillations in the time series in the form of a PSD plot.Thus given a time series, the dominant frequencies in the time series can be identified. Additional functions in this package allow the dominant frequencies of multiple groups of time series to be compared with each other. To see example usage with the main functions of this package, please visit this site: <https://yhhc2.github.io/psdr/articles/Introduction.html>. The mathematical operations used to generate the PSDs are described in these sites: <https://www.mathworks.com/help/matlab/ref/fft.html>. <https://www.mathworks.com/help/signal/ug/power-spectral-density-estimates-using-fft.html>.
This package provides functions for evaluating the mass density, cumulative distribution function, quantile function and random variate generation for the Polya-Aeppli distribution, also known as the geometric compound Poisson distribution. More information on the implementation can be found at Conrad J. Burden (2014) <arXiv:1406.2780>.
Optogenetics is a new tool to study neuronal circuits that have been genetically modified to allow stimulation by flashes of light. This package implements the methodological framework, Point-process Response model for Optogenetics (PRO), for analyzing data from these experiments. This method provides explicit nonlinear transformations to link the flash point-process with the spiking point-process. Such response functions can be used to provide important and interpretable scientific insights into the properties of the biophysical process that governs neural spiking in response to optogenetic stimulation.
This package provides a fast and flexible framework for agglomerative partitioning. partition uses an approach called Direct-Measure-Reduce to create new variables that maintain the user-specified minimum level of information. Each reduced variable is also interpretable: the original variables map to one and only one variable in the reduced data set. partition is flexible, as well: how variables are selected to reduce, how information loss is measured, and the way data is reduced can all be customized. partition is based on the Partition framework discussed in Millstein et al. (2020) <doi:10.1093/bioinformatics/btz661>.
Bayesian regularized quantile regression utilizing two major classes of shrinkage priors (the spike-and-slab priors and the horseshoe family of priors) leads to efficient Bayesian shrinkage estimation, variable selection and valid statistical inference. In this package, we have implemented robust Bayesian variable selection with spike-and-slab priors under high-dimensional linear regression models (Fan et al. (2024) <doi:10.3390/e26090794> and Ren et al. (2023) <doi:10.1111/biom.13670>), and regularized quantile varying coefficient models (Zhou et al.(2023) <doi:10.1016/j.csda.2023.107808>). In particular, valid robust Bayesian inferences under both models in the presence of heavy-tailed errors can be validated on finite samples. Additional models with spike-and-slab priors include robust Bayesian group LASSO and robust binary Bayesian LASSO (Fan and Wu (2025) <doi:10.1002/sta4.70078>). Besides, robust sparse Bayesian regression with the horseshoe family of (horseshoe, horseshoe+ and regularized horseshoe) priors has also been implemented and yielded valid inference results under heavy-tailed model errors(Fan et al.(2025) <doi:10.48550/arXiv.2507.10975>). The Markov chain Monte Carlo (MCMC) algorithms of the proposed and alternative models are implemented in C++.
Multivariate ordered probit model, i.e. the extension of the scalar ordered probit model where the observed variables have dimension greater than one. Estimation of the parameters is done via maximization of the pairwise likelihood, a special case of the composite likelihood obtained as product of bivariate marginal distributions. The package uses the Fortran 77 subroutine SADMVN by Alan Genz, with minor adaptations made by Adelchi Azzalini in his "mvnormt" package for evaluating the two-dimensional Gaussian integrals involved in the pairwise log-likelihood. Optimization of the latter objective function is performed via quasi-Newton box-constrained optimization algorithm, as implemented in nlminb.
Quantitative trait loci (QTL) analysis and exploration of meiotic patterns in autopolyploid bi-parental F1 populations. For all ploidy levels, identity-by-descent (IBD) probabilities can be estimated. Significance thresholds, exploring QTL allele effects and visualising results are provided. For more background and to reference the package see <doi:10.1093/bioinformatics/btab574>.
Collection of functions to get files in parquet format. Parquet is a columnar storage file format <https://parquet.apache.org/>. The files to convert can be of several formats ("csv", "RData", "rds", "RSQLite", "json", "ndjson", "SAS", "SPSS"...).
Obtener listado de datos, acceder y extender series del Portal de Datos de Hacienda.Las proyecciones se realizan con forecast', Hyndman RJ, Khandakar Y (2008) <doi:10.18637/jss.v027.i03>. Search, download and forecast time-series from the Ministry of Economy of Argentina. Forecasts are built with the forecast package, Hyndman RJ, Khandakar Y (2008) <doi:10.18637/jss.v027.i03>.
Algorithms to implement various Bayesian penalized survival regression models including: semiparametric proportional hazards models with lasso priors (Lee et al., Int J Biostat, 2011 <doi:10.2202/1557-4679.1301>) and three other shrinkage and group priors (Lee et al., Stat Anal Data Min, 2015 <doi:10.1002/sam.11266>); parametric accelerated failure time models with group/ordinary lasso prior (Lee et al. Comput Stat Data Anal, 2017 <doi:10.1016/j.csda.2017.02.014>).
See Miroshnikov and Conlon (2014) <doi:10.1371/journal.pone.0108425>. Recent Bayesian Markov chain Monto Carlo (MCMC) methods have been developed for big data sets that are too large to be analyzed using traditional statistical methods. These methods partition the data into non-overlapping subsets, and perform parallel independent Bayesian MCMC analyses on the data subsets, creating independent subposterior samples for each data subset. These independent subposterior samples are combined through four functions in this package, including averaging across subset samples, weighted averaging across subsets samples, and kernel smoothing across subset samples. The four functions assume the user has previously run the Bayesian analysis and has produced the independent subposterior samples outside of the package; the functions use as input the array of subposterior samples. The methods have been demonstrated to be useful for Bayesian MCMC models including Bayesian logistic regression, Bayesian Gaussian mixture models and Bayesian hierarchical Poisson-Gamma models. The methods are appropriate for Bayesian hierarchical models with hyperparameters, as long as data values in a single level of the hierarchy are not split into subsets.
Miscellaneous utilities for parallelizing large computations. Alternative to MapReduce. File splitting and distributed operations such as sort and aggregate. "Software Alchemy" method for parallelizing most statistical methods, presented in N. Matloff, Parallel Computation for Data Science, Chapman and Hall, 2015. Includes a debugging aid.
An interactive document on the topic of basic probability using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://analyticmodels.shinyapps.io/BayesShiny/>.
This package provides tools for penalised maximum likelihood estimation of hidden semi-Markov models (HSMMs) with flexible state dwell-time distributions. These include functions for model fitting, model checking and state-decoding. The package considers HSMMs for univariate time series with state-dependent gamma, normal, Poisson or Bernoulli distributions. For details, see Pohle, J., Adam, T. and Beumer, L.T. (2021): Flexible estimation of the state dwell-time distribution in hidden semi-Markov models. <arXiv:2101.09197>.
This package provides tools for estimating model-agnostic prediction intervals using conformal prediction, bootstrapping, and parametric prediction intervals. The package is designed for ease of use, offering intuitive functions for both binned and full conformal prediction methods, as well as parametric interval estimation with diagnostic checks. Currently only working for continuous predictions. For details on the conformal and bin-conditional conformal prediction methods, see Randahl, Williams, and Hegre (2024) <DOI:10.48550/arXiv.2410.14507>.
The main function, plot_GMM, is used for plotting output from Gaussian mixture models (GMMs), including both densities and overlaying mixture weight component curves from the fit GMM. The package also include the function, plot_cut_point, which plots the cutpoint (mu) from the GMM over a histogram of the distribution with several color options. Finally, the package includes the function, plot_mix_comps, which is used in the plot_GMM function, and can be used to create a custom plot for overlaying mixture component curves from GMMs. For the plot_mix_comps function, usage most often will be specifying the "fun" argument within "stat_function" in a ggplot2 object.