Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Collection of pivotal algorithms for: relabelling the MCMC chains in order to undo the label switching problem in Bayesian mixture models; fitting sparse finite mixtures; initializing the centers of the classical k-means algorithm in order to obtain a better clustering solution. For further details see Egidi, Pappadà , Pauli and Torelli (2018b)<ISBN:9788891910233>.
Building patient level networks for prediction of medical outcomes and draw the cluster of network. This package is based on paper Personalized disease networks for understanding and predicting cardiovascular diseases and other complex processes (See Cabrera et al. <http://circ.ahajournals.org/content/134/Suppl_1/A14957>).
In ancient Roman mythology, Pluto was the ruler of the underworld and presides over the afterlife. Pluto was frequently conflated with Plutus', the god of wealth, because mineral wealth was found underground. When plotting with R, you try once, twice, practice again and again, and finally you get a pretty figure you want. It's a plot tour', a tour about repetition and reward. Hope plutor helps you on the tour!
Figures rendered on graphics devices are usually rescaled to fit pre-determined device dimensions. plotscale implements the reverse: desired plot dimensions are specified and device dimensions are calculated to accommodate marginal material, giving consistent proportions for plot elements. Default methods support grid graphics such as lattice and ggplot. See "example('devsize')" and "vignette('plotscale')".
Package to Percentile estimation of fetal weight for twins by chorionicity (dichorionic-diamniotic or monochorionic-diamniotic).
Calculates the lexicogrammatical and functional features described by Biber (1985) <doi:10.1515/ling.1985.23.2.337> and widely used for text-type, register, and genre classification tasks.
This package provides function for performing Bayesian survival regression using Horseshoe prior in the accelerated failure time model with log normal assumption in order to achieve high dimensional pan-cancer variable selection as developed in Maity et. al. (2019) <doi:10.1111/biom.13132>.
Structured fusion Lasso penalized estimation of multi-state models with the penalty applied to absolute effects and absolute effect differences (i.e., effects on transition-type specific hazard rates).
Spectral response data for broadband ultraviolet and visible radiation sensors. Angular response data for broadband ultraviolet and visible radiation sensors and diffusers used as entrance optics. Data obtained from multiple sources were used: author-supplied data from scientific research papers, sensor-manufacturer supplied data, and published sensor specifications. Part of the r4photobiology suite Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
Simulate and run the Gaussian puff forward atmospheric model in sensor (specific sensor coordinates) or grid (across the grid of a full oil and gas operations site) modes, following Jia, M., Fish, R., Daniels, W., Sprinkle, B. and Hammerling, D. (2024) <doi:10.26434/chemrxiv-2023-hc95q-v3>. Numerous visualization options, including static and animated, 2D and 3D, and a site map generator based on sensor and source coordinates.
Following Sommer (2022) <https://mediatum.ub.tum.de/1658240> portfolio level risk estimates (e.g. Value at Risk, Expected Shortfall) are estimated by modeling each asset univariately by an ARMA-GARCH model and then their cross dependence via a Vine Copula model in a rolling window fashion. One can even condition on variables/time series at certain quantile levels to stress test the risk measure estimates.
Image-based color matching using the "Mycological Colour Chart" by Rayner (1970, ISBN:9780851980263) and its associated fungal pigments. This package will assist mycologists in identifying color during morphological analysis.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 Household questionnaire data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of SDG monitoring, as the survey produces information on 32 global SDG indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using Probability Proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household (<http://www.mics.unicef.org/surveys>).
Implementation of Probabilistic Regression Trees (PRTree), providing functions for model fitting and prediction, with specific adaptations to handle missing values. The main computations are implemented in Fortran for high efficiency. The package is based on the PRTree methodology described in Alkhoury et al. (2020), "Smooth and Consistent Probabilistic Regression Trees" <https://proceedings.neurips.cc/paper_files/paper/2020/file/8289889263db4a40463e3f358bb7c7a1-Paper.pdf>. Details on the treatment of missing data and implementation aspects are presented in Prass, T.S.; Neimaier, A.S.; Pumi, G. (2025), "Handling Missing Data in Probabilistic Regression Trees: Methods and Implementation in R" <doi:10.48550/arXiv.2510.03634>.
Function to read PX-Web data into R via API. The example code reads data from the three national statistical institutes, Statistics Norway, Statistics Sweden and Statistics Finland.
This package provides tools for the practical management of financial portfolios: backtesting investment and trading strategies, computing profit/loss and returns, analysing trades, handling lists of transactions, reporting, and more. The package provides a small set of reliable, efficient and convenient tools for processing and analysing trade/portfolio data. The manual provides all the details; it is available from <https://enricoschumann.net/R/packages/PMwR/manual/PMwR.html>. Examples and descriptions of new features are provided at <https://enricoschumann.net/notes/PMwR/>.
Provision of a set of models and methods for use in the allocation and management of capital in financial portfolios.
This package provides tools to compute unbiased pleiotropic heritability estimates of complex diseases from genome-wide association studies (GWAS) summary statistics. We estimate pleiotropic heritability from GWAS summary statistics by estimating the proportion of variance explained from an estimated genetic correlation matrix (Bulik-Sullivan et al. 2015 <doi:10.1038/ng.3406>) and employing a Monte-Carlo bias correction procedure to account for sampling noise in genetic correlation estimates.
This package provides functions to calculate power and sample size for testing main effect or interaction effect in the survival analysis of epidemiological studies (non-randomized studies), taking into account the correlation between the covariate of the interest and other covariates. Some calculations also take into account the competing risks and stratified analysis. This package also includes a set of functions to calculate power and sample size for testing main effect in the survival analysis of randomized clinical trials and conditional logistic regression for nested case-control study.
Density, distribution function, quantile function and random generation for the family of power and reversal power distributions.
Gene-level variant association tests with disease status for pedigree data: kernel and burden association statistics.
This package provides methods for reducing the number of features within a data set. See Bauer JO (2021) <doi:10.1145/3475827.3475832> and Bauer JO, Drabant B (2021) <doi:10.1016/j.jmva.2021.104754> for more information on principal loading analysis.
This package provides a simple package to grab a Bible proverb corresponding to the day of the month.
This package implements a range of facilities for post-hoc analysis and summarizing linear models, generalized linear models and generalized linear mixed models, including grouping and clustering via pairwise comparisons using graph representations and efficient algorithms for finding maximal cliques of a graph. Includes also non-parametric toos for post-hoc analysis. It has S3 methods for printing summarizing, and producing plots, line and barplots suitable for post-hoc analyses.