Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Sankey diagrams are a powerfull and visually attractive way to visualize the flow of conservative substances through a system. They typically consists of a network of nodes, and fluxes between them, where the total balance in each internal node is 0, i.e. input equals output. Sankey diagrams are typically used to display energy systems, material flow accounts etc. Unlike so-called alluvial plots, Sankey diagrams also allow for cyclic flows: flows originating from a single node can, either direct or indirect, contribute to the input of that same node. This package, named after the Greek aphorism Panta Rhei (everything flows), provides functions to create publication-quality diagrams, using data in tables (or spread sheets) and a simple syntax.
Combine probabilistic forecasts using CRPS learning algorithms proposed in Berrisch, Ziel (2021) <doi:10.48550/arXiv.2102.00968> <doi:10.1016/j.jeconom.2021.11.008>. The package implements multiple online learning algorithms like Bernstein online aggregation; see Wintenberger (2014) <doi:10.48550/arXiv.1404.1356>. Quantile regression is also implemented for comparison purposes. Model parameters can be tuned automatically with respect to the loss of the forecast combination. Methods like predict(), update(), plot() and print() are available for convenience. This package utilizes the optim C++ library for numeric optimization <https://github.com/kthohr/optim>.
An implementation of data analysis tools for samples of symmetric or Hermitian positive definite matrices, such as collections of covariance matrices or spectral density matrices. The tools in this package can be used to perform: (i) intrinsic wavelet transforms for curves (1D) or surfaces (2D) of Hermitian positive definite matrices with applications to dimension reduction, denoising and clustering in the space of Hermitian positive definite matrices; and (ii) exploratory data analysis and inference for samples of positive definite matrices by means of intrinsic data depth functions and rank-based hypothesis tests in the space of Hermitian positive definite matrices.
Given a set of source zone polygons such as census tracts or city blocks alongside with population counts and a target zone of incogruent yet superimposed polygon features (such as individual buildings) populR transforms population counts from the former to the latter using Areal Interpolation methods.
This package implements sparse regression with paired covariates (<doi:10.1007/s11634-019-00375-6>). The paired lasso is designed for settings where each covariate in one set forms a pair with a covariate in the other set (one-to-one correspondence). For the optional correlation shrinkage, install ashr (<https://github.com/stephens999/ashr>) and CorShrink (<https://github.com/kkdey/CorShrink>) from GitHub (see README).
This package provides an easy-to-use yet adaptable set of tools to conduct person-center analysis using a two-step clustering procedure. As described in Bergman and El-Khouri (1999) <DOI:10.1002/(SICI)1521-4036(199910)41:6%3C753::AID-BIMJ753%3E3.0.CO;2-K>, hierarchical clustering is performed to determine the initial partition for the subsequent k-means clustering procedure.
Statically determine and visualize the function dependencies within and across packages. This may be useful for managing function dependencies across a code base of multiple R packages.
Implementation of the Partitioned Local Depth (PaLD) approach which provides a measure of local depth and the cohesion of a point to another which (together with a universal threshold for distinguishing strong and weak ties) may be used to reveal local and global structure in data, based on methods described in Berenhaut, Moore, and Melvin (2022) <doi:10.1073/pnas.2003634119>. No extraneous inputs, distributional assumptions, iterative procedures nor optimization criteria are employed. This package includes functions for computing local depths and cohesion as well as flexible functions for plotting community networks and displays of cohesion against distance.
This package provides a set of functions useful when evaluating the results of presence-absence models. Package includes functions for calculating threshold dependent measures such as confusion matrices, pcc, sensitivity, specificity, and Kappa, and produces plots of each measure as the threshold is varied. It will calculate optimal threshold choice according to a choice of optimization criteria. It also includes functions to plot the threshold independent ROC curves along with the associated AUC (area under the curve).
Includes functions to calculate several physicochemical properties and indices for amino-acid sequences as well as to read and plot XVG output files from the GROMACS molecular dynamics package.
Reviews other packages during code review by looking at their dependencies, code style, code complexity, and how internally defined functions interact with one another.
Simulates pooled sequencing data under a variety of conditions. Also allows for the evaluation of the average absolute difference between allele frequencies computed from genotypes and those computed from pooled data. Carvalho et al., (2022) <doi:10.1101/2023.01.20.524733>.
Achieve internal conversions of mass units, molar units, and volume units commonly used in pharmacokinetics, as well as conversions between mass units and molar units.
This is a wrapper for the Mercury Parser API. The Mercury Parser is a single API endpoint that takes a URL and gives you back the content reliably and easily. With just one API request, Mercury takes any web article and returns only the relevant content â headline, author, body text, relevant images and more â free from any clutter. Itâ s reliable, easy-to-use and free. See the webpage here: <https://mercury.postlight.com/>.
Various useful functions for statisticians: describe data, plot Kaplan-Meier curves with numbers of subjects at risk, compare data sets, display spaghetti-plot, build multi-contingency tables...
Routines for flexible functional form estimation via basis regression, with model selection via the adaptive LASSO or SCAD to prevent overfitting.
This package provides a coding assistant using Perplexity's Large Language Models <https://www.perplexity.ai/> API. A set of functions and RStudio add-ins that aim to help R developers.
Parallelized version of the "segment" function from Bioconductor package "DNAcopy", utilizing multi-core computation on host CPU.
This package provides a C++ backend for multivariate phylogenetic comparative models implemented in the R-package PCMBase'. Can be used in combination with PCMBase to enable fast and parallel likelihood calculation. Implements the pruning likelihood calculation algorithm described in Mitov et al. (2020) <doi:10.1016/j.tpb.2019.11.005>. Uses the SPLITT C++ library for parallel tree traversal described in Mitov and Stadler (2018) <doi:10.1111/2041-210X.13136>.
This package contains functions to obtain the operational characteristics of bioequivalence studies in Two-Stage Designs (TSD) via simulations.
Calculate seat apportionment for legislative bodies with various methods. The algorithms include divisor or highest averages methods (e.g. Jefferson, Webster or Adams), largest remainder methods and biproportional apportionment. Gaffke, N. & Pukelsheim, F. (2008) <doi:10.1016/j.mathsocsci.2008.01.004> Oelbermann, K. F. (2016) <doi:10.1016/j.mathsocsci.2016.02.003>.
Some functions at the intersection of dplyr and purrr that formerly lived in purrr'.
The PP package includes estimation of (MLE, WLE, MAP, EAP, ROBUST) person parameters for the 1,2,3,4-PL model and the GPCM (generalized partial credit model). The parameters are estimated under the assumption that the item parameters are known and fixed. The package is useful e.g. in the case that items from an item pool / item bank with known item parameters are administered to a new population of test-takers and an ability estimation for every test-taker is needed.
Displays provenance graphically for provenance collected by the rdt or rdtLite packages, or other tools providing compatible PROV JSON output. The exact format of the JSON created by rdt and rdtLite is described in <https://github.com/End-to-end-provenance/ExtendedProvJson>. More information about rdtLite and associated tools is available at <https://github.com/End-to-end-provenance/> and Barbara Lerner, Emery Boose, and Luis Perez (2018), Using Introspection to Collect Provenance in R, Informatics, <doi: 10.3390/informatics5010012>.