Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calculate common types of tables for weighted survey data. Options include topline and (2-way and 3-way) crosstab tables of categorical or ordinal data as well as summary tables of weighted numeric variables. Optionally, include the margin of error at selected confidence intervals including the design effect. The design effect is calculated as described by Kish (1965) <doi:10.1002/bimj.19680100122> beginning on page 257. Output takes the form of tibbles (simple data frames). This package conveniently handles labelled data, such as that commonly used by Stata and SPSS. Complex survey design is not supported at this time.
Runs generalized and multinominal logistic (GLM and MLM) models, as well as random forest (RF), Bagging (BAG), and Boosting (BOOST). This package prints out to predictive outcomes easy for the selected data and data splits.
The Proton Game is a console-based data-crunching game for younger and older data scientists. Act as a data-hacker and find Slawomir Pietraszko's credentials to the Proton server. You have to solve four data-based puzzles to find the login and password. There are many ways to solve these puzzles. You may use loops, data filtering, ordering, aggregation or other tools. Only basics knowledge of R is required to play the game, yet the more functions you know, the more approaches you can try. The knowledge of dplyr is not required but may be very helpful. This game is linked with the ,,Pietraszko's Cave story available at http://biecek.pl/BetaBit/Warsaw. It's a part of Beta and Bit series. You will find more about the Beta and Bit series at http://biecek.pl/BetaBit.
Support Vector Machine (SVM) classification with simultaneous feature selection using penalty functions is implemented. The smoothly clipped absolute deviation (SCAD), L1-norm', Elastic Net ('L1-norm and L2-norm') and Elastic SCAD (SCAD and L2-norm') penalties are available. The tuning parameters can be found using either a fixed grid or a interval search.
This package provides a native R client library for querying the Prometheus time-series database, using the PromQL query language.
Manipulates invertible functions from a finite set to itself. Can transform from word form to cycle form and back. To cite the package in publications please use Hankin (2020) "Introducing the permutations R package", SoftwareX, volume 11 <doi:10.1016/j.softx.2020.100453>.
Interface to the Pharmpy pharmacometrics library. The Reticulate package is used to interface Python from R.
Check a data frame for personal information, including names, location, disability status, and geo-coordinates.
Draw 2 dimensional and three dimensional plot for multiple regression models using package ggplot2 and rgl'. Supports linear models (lm), generalized linear models (glm) and local polynomial regression fittings (loess).
Multivariate ordered probit model, i.e. the extension of the scalar ordered probit model where the observed variables have dimension greater than one. Estimation of the parameters is done via maximization of the pairwise likelihood, a special case of the composite likelihood obtained as product of bivariate marginal distributions. The package uses the Fortran 77 subroutine SADMVN by Alan Genz, with minor adaptations made by Adelchi Azzalini in his "mvnormt" package for evaluating the two-dimensional Gaussian integrals involved in the pairwise log-likelihood. Optimization of the latter objective function is performed via quasi-Newton box-constrained optimization algorithm, as implemented in nlminb.
This package provides a lightweight, dependency-free, and simplified implementation of the Pseudo-Expectation Gauss-Seidel (PEGS) algorithm. It fits the multivariate ridge regression model for genomic prediction Xavier and Habier (2022) <doi:10.1186/s12711-022-00730-w> and Xavier et al. (2025) <doi:10.1093/genetics/iyae179>, providing heritability estimates, genetic correlations, breeding values, and regression coefficient estimates for prediction. This package provides an alternative to the bWGR package by Xavier et al. (2019) <doi:10.1093/bioinformatics/btz794> by using LAPACK for its algebraic operations.
Toolkit for fitting point process models with sequences of LASSO penalties ("regularisation paths"), as described in Renner, I.W. and Warton, D.I. (2013) <doi:10.1111/j.1541-0420.2012.01824.x>. Regularisation paths of Poisson point process models or area-interaction models can be fitted with LASSO, adaptive LASSO or elastic net penalties. A number of criteria are available to judge the bias-variance tradeoff.
Aims to utilize model-based clustering (unsupervised) for high dimensional and ultra large data, especially in a distributed manner. The code employs pbdMPI to perform a expectation-gathering-maximization algorithm for finite mixture Gaussian models. The unstructured dispersion matrices are assumed in the Gaussian models. The implementation is default in the single program multiple data programming model. The code can be executed through pbdMPI and MPI implementations such as OpenMPI and MPICH'. See the High Performance Statistical Computing website <https://snoweye.github.io/hpsc/> for more information, documents and examples.
Generates multivariate data with count and continuous variables with a pre-specified correlation matrix. The count and continuous variables are assumed to have Poisson and normal marginals, respectively. The data generation mechanism is a combination of the normal to anything principle and a connection between Poisson and normal correlations in the mixture. The details of the method are explained in Yahav et al. (2012) <DOI:10.1002/asmb.901>.
Conduct a noncompartmental analysis as closely as possible to the most widely used commercial software. Some features are 1) CDISC SDTM terms 2) Automatic slope selection with the same criterion of WinNonlin(R) 3) Supporting both linear-up linear-down and linear-up log-down method 4) Interval(partial) AUCs with linear or log interpolation method * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN:9198299107).
Identifies the entries with patterned responses for psychometric scales. The patterns included in the package are identical (a, a, a), ascending (a, b, c), descending (c, b, a), alternative (a, b, a, b / a, b, c, a, b, c).
Obtener listado de datos, acceder y extender series del Portal de Datos de Hacienda.Las proyecciones se realizan con forecast', Hyndman RJ, Khandakar Y (2008) <doi:10.18637/jss.v027.i03>. Search, download and forecast time-series from the Ministry of Economy of Argentina. Forecasts are built with the forecast package, Hyndman RJ, Khandakar Y (2008) <doi:10.18637/jss.v027.i03>.
Looks for amino acid and/or nucleotide patterns and/or small ligands coordinated to a given prosthetic centre. Files have to be in the local file system and contain proper extension.
Set of functions that implement the PoDBAY method, described in the publication A method to estimate probability of disease and vaccine efficacy from clinical trial immunogenicity data by Julie Dudasova, Regina Laube, Chandni Valiathan, Matthew C. Wiener, Ferdous Gheyas, Pavel Fiser, Justina Ivanauskaite, Frank Liu and Jeffrey R. Sachs (NPJ Vaccines, 2021), <doi:10.1038/s41541-021-00377-6>.
Constructors of waveband objects for commonly used biological spectral weighting functions (BSWFs) and for different wavebands describing named ranges of wavelengths in the ultraviolet (UV), visible (VIS) and infrared (IR) regions of the electromagnetic spectrum. Part of the r4photobiology suite, Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
PHATE is a tool for visualizing high dimensional single-cell data with natural progressions or trajectories. PHATE uses a novel conceptual framework for learning and visualizing the manifold inherent to biological systems in which smooth transitions mark the progressions of cells from one state to another. To see how PHATE can be applied to single-cell RNA-seq datasets from hematopoietic stem cells, human embryonic stem cells, and bone marrow samples, check out our publication in Nature Biotechnology at <doi:10.1038/s41587-019-0336-3>.
Useful functions and workflows for proteomics quality control and data analysis of both limited proteolysis-coupled mass spectrometry (LiP-MS) (Feng et. al. (2014) <doi:10.1038/nbt.2999>) and regular bottom-up proteomics experiments. Data generated with search tools such as Spectronaut', MaxQuant and Proteome Discover can be easily used due to flexibility of functions.
Allows users to find a piecewise linear regression approximation to a given continuous univariate function within a specified error tolerance. Methods based on Warwicker and Rebennack (2025) "Efficient continuous piecewise linear regression for linearising univariate non-linear functions" <doi:10.1080/24725854.2023.2299809>.
This package provides a collection of functions to process digital images, depict greenness index trajectories and extract relevant phenological stages.