Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An implementation of Bayesian single-arm phase II design methods for binary outcome based on posterior probability (Thall and Simon (1994) <doi:10.2307/2533377>) and predictive probability (Lee and Liu (2008) <doi:10.1177/1740774508089279>).
Translates beliefs into prior information in the form of Beta and Gamma distributions. It can be used for the generation of priors on the prevalence of disease and the sensitivity/specificity of diagnostic tests and any other binomial experiment.
Designed for prediction error estimation through resampling techniques, possibly accelerated by parallel execution on a compute cluster. Newly developed model fitting routines can be easily incorporated. Methods used in the package are detailed in Porzelius Ch., Binder H. and Schumacher M. (2009) <doi:10.1093/bioinformatics/btp062> and were used, for instance, in Porzelius Ch., Schumacher M. and Binder H. (2011) <doi:10.1007/s00180-011-0236-6>.
This package provides a shiny application for visualizing high-dimensional data using non-linear dimensionality reduction (NLDR) techniques such as t-SNE and UMAP. It provides an interactive platform to explore high-dimensional datasets, diagnose the quality of the embeddings using the quollr package, and compare different NLDR methods.
Automatic estimation of number of principal components in PCA with PEnalized SEmi-integrated Likelihood (PESEL). See Piotr Sobczyk, Malgorzata Bogdan, Julie Josse "Bayesian dimensionality reduction with PCA using penalized semi-integrated likelihood" (2017) <doi:10.1080/10618600.2017.1340302>.
This package implements principal component analysis, orthogonal rotation and multiple factor analysis for a mixture of quantitative and qualitative variables.
Extends the S3 generic function knit_print() in knitr to automatically print some objects using an appropriate format such as Markdown or LaTeX. For example, data frames are automatically printed as tables, and the help() pages can also be rendered in knitr documents.
This package performs minimax linkage hierarchical clustering. Every cluster has an associated prototype element that represents that cluster as described in Bien, J., and Tibshirani, R. (2011), "Hierarchical Clustering with Prototypes via Minimax Linkage," The Journal of the American Statistical Association, 106(495), 1075-1084.
This package provides a set of Study Data Tabulation Model (SDTM) datasets from the Clinical Data Interchange Standards Consortium (CDISC) pilot project used for testing and developing Analysis Data Model (ADaM) datasets inside the pharmaverse family of packages. SDTM dataset specifications are described in the CDISC SDTM implementation guide, accessible by creating a free account on <https://www.cdisc.org/>.
This package provides a suite of multivariate methods and data visualization tools to implement profile analysis and cross-validation techniques described in Davison & Davenport (2002) <DOI: 10.1037/1082-989X.7.4.468>, Bulut (2013), and other published and unpublished resources. The package includes routines to perform criterion-related profile analysis, profile analysis via multidimensional scaling, moderated profile analysis, profile analysis by group, and a within-person factor model to derive score profiles.
The plotcli package provides terminal-based plotting in R. It supports colored scatter plots, line plots, bar plots, boxplots, histograms, density plots, and more. The ggplotcli() function is a universal converter that renders any ggplot2 plot in the terminal using Unicode Braille characters or ASCII. Features include support for 15+ geom types, faceting (facet_wrap/facet_grid), automatic theme detection, legends, optimized color mapping, and multiple canvas types.
This package contains common univariate and multivariate portmanteau test statistics for time series models. These tests are based on using asymptotic distributions such as chi-square distribution and based on using the Monte Carlo significance tests. Also, it can be used to simulate from univariate and multivariate seasonal time series models.
Read and write GraphPad Prism .pzfx files in R.
Data sets and functions used in the polish book "Przewodnik po pakiecie R" (The Hitchhiker's Guide to the R). See more at <http://biecek.pl/R>. Among others you will find here data about housing prices, cancer patients, running times and many others.
The probaverse is a suite of packages designed to facilitate creating advanced statistical models through probability distributions. These packages work best when loaded together because they share a common design philosophy and focus on different aspects of developing statistical models. Inspired by the tidyverse package, the probaverse package makes it easy to load the entire suite of probaverse packages together.
Performant interactive scatterplot for ~ 1 million points. Zoom, pan, and pick points. Includes tooltips, labels, a grid overlay, legend, and coupled interactions across multiple plots.
This package provides functions to patch specials in .dvi files, or entries in .synctex files. Works with concordance=TRUE in Sweave, knitr or R Markdown to link sources to previews.
This package provides advanced algorithms for analyzing pointcloud data from terrestrial laser scanner in forestry applications. Key features include fast voxelization of large datasets; segmentation of point clouds into forest floor, understorey, canopy, and wood components. The package enables efficient processing of large-scale forest pointcloud data, offering insights into forest structure, connectivity, and fire risk assessment. Algorithms to analyze pointcloud data (.xyz input file). For more details, see Ferrara & Arrizza (2025) <https://hdl.handle.net/20.500.14243/533471>. For single tree segmentation details, see Ferrara et al. (2018) <doi:10.1016/j.agrformet.2018.04.008>.
Comprehensive toolkit for generating various numerical features of protein sequences described in Xiao et al. (2015) <DOI:10.1093/bioinformatics/btv042>. For full functionality, the software ncbi-blast+ is needed, see <https://blast.ncbi.nlm.nih.gov/doc/blast-help/downloadblastdata.html> for more information.
Bayesian network learning using the PCHC, FEDHC, MMHC and variants of these algorithms. PCHC stands for PC Hill-Climbing, a new hybrid algorithm that uses PC to construct the skeleton of the BN and then applies the Hill-Climbing greedy search. More algorithms and variants have been added, such as MMHC, FEDHC, and the Tabu search variants, PCTABU, MMTABU and FEDTABU. The relevant papers are: a) Tsagris M. (2021). "A new scalable Bayesian network learning algorithm with applications to economics". Computational Economics, 57(1): 341-367. <doi:10.1007/s10614-020-10065-7>. b) Tsagris M. (2022). "The FEDHC Bayesian Network Learning Algorithm". Mathematics 2022, 10(15): 2604. <doi:10.3390/math10152604>.
This package implements the American Heart Association Predicting Risk of cardiovascular disease EVENTs (PREVENT) equations from Khan SS, Matsushita K, Sang Y, and colleagues (2023) <doi:10.1161/CIRCULATIONAHA.123.067626>, with optional comparison with their de facto predecessor, the Pooled Cohort Equations from the American Heart Association and American College of Cardiology (2013) <doi:10.1161/01.cir.0000437741.48606.98> and the revision to the Pooled Cohort Equations from Yadlowsky and colleagues (2018) <doi:10.7326/M17-3011>.
The introduction of the broom package has made converting model objects into data frames as simple as a single function. While the broom package focuses on providing tidy data frames that can be used in advanced analysis, it deliberately stops short of providing functionality for reporting models in publication-ready tables. pixiedust provides this functionality with a programming interface intended to be similar to ggplot2's system of layers with fine tuned control over each cell of the table. Options for output include printing to the console and to the common markdown formats (markdown, HTML, and LaTeX). With a little pixiedust (and happy thoughts) tables can really fly.
This package provides a system for fast, accurate, and flexible whole genome bisulfite sequencing (WGBS) data analysis of two-condition comparisons. Principal Component BiSulfite, PCBS', assigns methylated loci eigenvector values from the treatment-delineating principal component in lieu of running millions of pairwise statistical tests, which dramatically increases analysis flexibility and reduces computational requirements. Methods: <https://katlande.github.io/PCBS/articles/Differential_Methylation.html>.
This package implements univariate polynomial operations in R, including polynomial arithmetic, finding zeros, plotting, and some operations on lists of polynomials.