Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a unified framework of parametric simplex method for a variety of sparse learning problems (e.g., Dantzig selector (for linear regression), sparse quantile regression, sparse support vector machines, and compressive sensing) combined with efficient hyper-parameter selection strategies. The core algorithm is implemented in C++ with Eigen3 support for portable high performance linear algebra. For more details about parametric simplex method, see Haotian Pang (2017) <https://papers.nips.cc/paper/6623-parametric-simplex-method-for-sparse-learning.pdf>.
Allow to run pylint on Python files with a R command or a RStudio addin. The report appears in the RStudio viewer pane as a formatted HTML file.
Validation of risk predictions obtained from survival models and competing risk models based on censored data using inverse weighting and cross-validation. Most of the pec functionality has been moved to riskRegression'.
Implementations of the quantile slice sampler of Heiner et al. (2024+, in preparation) as well as other popular slice samplers are provided. Helper functions for specifying pseudo-target distributions are included, both for diagnostics and for tuning the quantile slice sampler. Other implemented methods include the generalized elliptical slice sampler of Nishihara et al. (2014)<https://jmlr.org/papers/v15/nishihara14a.html
This package implements Q-Learning, a model-free form of reinforcement learning, described in work by Strehl, Li, Wiewiora, Langford & Littman (2006) <doi:10.1145/1143844.1143955>.
Fit quantile regression neural network models with optional left censoring, partial monotonicity constraints, generalized additive model constraints, and the ability to fit multiple non-crossing quantile functions following Cannon (2011) <doi:10.1016/j.cageo.2010.07.005> and Cannon (2018) <doi:10.1007/s00477-018-1573-6>.
Accurate estimates of the diets of predators are required in many areas of ecology, but for many species current methods are imprecise, limited to the last meal, and often biased. The diversity of fatty acids and their patterns in organisms, coupled with the narrow limitations on their biosynthesis, properties of digestion in monogastric animals, and the prevalence of large storage reservoirs of lipid in many predators, led to the development of quantitative fatty acid signature analysis (QFASA) to study predator diets.
Support package for the textbook "An Introduction to Quantitative Text Analysis for Linguists: Reproducible Research Using R" (Francom, 2024) <doi:10.4324/9781003393764>. Includes functions to acquire, clean, and analyze text data as well as functions to document and share the results of text analysis. The package is designed to be used in conjunction with the book, but can also be used as a standalone package for text analysis.
It includes test for multivariate normality, test for uniformity on the d-dimensional Sphere, non-parametric two- and k-sample tests, random generation of points from the Poisson kernel-based density and clustering algorithm for spherical data. For more information see Saraceno G., Markatou M., Mukhopadhyay R. and Golzy M. (2024) <doi:10.48550/arXiv.2402.02290> Markatou, M. and Saraceno, G. (2024) <doi:10.48550/arXiv.2407.16374>, Ding, Y., Markatou, M. and Saraceno, G. (2023) <doi:10.5705/ss.202022.0347>, and Golzy, M. and Markatou, M. (2020) <doi:10.1080/10618600.2020.1740713>.
This package provides functions for constructing near-optimal generalized full matching. Generalized full matching is an extension of the original full matching method to situations with more intricate study designs. The package is made with large data sets in mind and derives matches more than an order of magnitude quicker than other methods.
This package provides functions for assigning treatments in randomized experiments using near-optimal threshold blocking. The package is made with large data sets in mind and derives blocks more than an order of magnitude quicker than other methods.
Calculates the number of four-taxon subtrees consistent with a pair of cladograms, calculating the symmetric quartet distance of Bandelt & Dress (1986), Reconstructing the shape of a tree from observed dissimilarity data, Advances in Applied Mathematics, 7, 309-343 <doi:10.1016/0196-8858(86)90038-2>, and using the tqDist algorithm of Sand et al. (2014), tqDist: a library for computing the quartet and triplet distances between binary or general trees, Bioinformatics, 30, 2079รข 2080 <doi:10.1093/bioinformatics/btu157> for pairs of binary trees.
The computation of quadratic form (QF) distributions is often not trivial and it requires numerical routines. The package contains functions aimed at evaluating the exact distribution of quadratic forms (QFs) and ratios of QFs. In particular, we propose to evaluate density, quantile and distribution functions of positive definite QFs and ratio of independent positive QFs by means of an algorithm based on the numerical inversion of Mellin transforms.
An easy framework to set a quality control workflow on a dataset. Includes a various range of functions that allow to establish an adaptable data quality control.
The modeling and prediction of graph-associated time series(GATS) based on continuous time quantum walk. This software is mainly used for feature extraction, modeling, prediction and result evaluation of GATS, including continuous time quantum walk simulation, feature selection, regression analysis, time series prediction, and series fit calculation. A paper is attached to the package for reference.
This package provides functions to access survey results directly into R using the Qualtrics API. Qualtrics <https://www.qualtrics.com/about/> is an online survey and data collection software platform. See <https://api.qualtrics.com/> for more information about the Qualtrics API. This package is community-maintained and is not officially supported by Qualtrics'.
This package provides methods for estimation of mean- and quantile-optimal treatment regimes from censored data. Specifically, we have developed distinct functions for three types of right censoring for static treatment using quantile criterion: (1) independent/random censoring, (2) treatment-dependent random censoring, and (3) covariates-dependent random censoring. It also includes a function to estimate quantile-optimal dynamic treatment regimes for independent censored data. Finally, this package also includes a simulation data generative model of a dynamic treatment experiment proposed in literature.
This package provides a method for prediction of environmental conditions based on transcriptome data linked with the environmental gradients. This package provides functions to overview gene-environment relationships, to construct the prediction model, and to predict environmental conditions where the transcriptomes were generated. This package can quest for candidate genes for the model construction even in non-model organisms transcriptomes without any genetic information.
Grows a qualitative interaction tree. Quint is a tool for subgroup analysis, suitable for data from a two-arm randomized controlled trial. More information in Dusseldorp, E., Doove, L., & Van Mechelen, I. (2016) <doi:10.3758/s13428-015-0594-z>.
These functions use data augmentation and Bayesian techniques for the assessment of single-member and incomplete ensembles of climate projections. It provides unbiased estimates of climate change responses of all simulation chains and of all uncertainty variables. It additionally propagates uncertainty due to missing information in the estimates. - Evin, G., B. Hingray, J. Blanchet, N. Eckert, S. Morin, and D. Verfaillie. (2019) <doi:10.1175/JCLI-D-18-0606.1>.
Resources, tutorials, and code snippets dedicated to exploring the intersection of quantum computing and artificial intelligence (AI) in the context of analyzing Cluster of Differentiation 4 (CD4) lymphocytes and optimizing antiretroviral therapy (ART) for human immunodeficiency virus (HIV). With the emergence of quantum artificial intelligence and the development of small-scale quantum computers, there's an unprecedented opportunity to revolutionize the understanding of HIV dynamics and treatment strategies. This project leverages the R package qsimulatR (Ostmeyer and Urbach, 2023, <https://CRAN.R-project.org/package=qsimulatR>), a quantum computer simulator, to explore these applications in quantum computing techniques, addressing the challenges in studying CD4 lymphocytes and enhancing ART efficacy.
Nonlinear machine learning tool for classification, clustering and dimensionality reduction. It integrates 12 q-kernel functions and 15 conditional negative definite kernel functions and includes the q-kernel and conditional negative definite kernel version of density-based spatial clustering of applications with noise, spectral clustering, generalized discriminant analysis, principal component analysis, multidimensional scaling, locally linear embedding, sammon's mapping and t-Distributed stochastic neighbor embedding.
This package provides functions for making run charts [Anhoej, Olesen (2014) <doi:10.1371/journal.pone.0113825>] and basic Shewhart control charts [Mohammed, Worthington, Woodall (2008) <doi:10.1136/qshc.2004.012047>] for measure and count data. The main function, qic(), creates run and control charts and has a simple interface with a rich set of options to control data analysis and plotting, including options for automatic data aggregation by subgroups, easy analysis of before-and-after data, exclusion of one or more data points from analysis, and splitting charts into sequential time periods. Missing values and empty subgroups are handled gracefully.
This package provides functions to convert text data for labelling into format appropriate for importing into Qualtrics. Supports multiple language, including right-to-left scripts as well as different response types. Outputs an Advance Format .txt file that read into Qualtrics.