Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Quality of care is compared across accountable entities, including hospitals, provider groups, and insurance plans, using standardized quality measures. However, observed variations in quality measure performance might be the result of chance sampling or measurement errors. Contains functions for estimating the reliability of unadjusted and risk-standardized quality measures.
This package provides routines to create some quaternions splines: Barry-Goldman algorithm, De Casteljau algorithm, and Kochanek-Bartels algorithm. The implementations are based on the Python library splines'. Quaternions splines allow to construct spherical curves. References: Barry and Goldman <doi:10.1145/54852.378511>, Kochanek and Bartels <doi:10.1145/800031.808575>.
This package provides a toolkit for analysis and visualization of data from fluorophore-assisted seed amplification assays, such as Real-Time Quaking-Induced Conversion (RT-QuIC) and Fluorophore-Assisted Protein Misfolding Cyclic Amplification (PMCA). QuICSeedR addresses limitations in existing software by automating data processing, supporting large-scale analysis, and enabling comparative studies of analysis methods. It incorporates methods described in Henderson et al. (2015) <doi:10.1099/vir.0.069906-0>, Li et al. (2020) <doi:10.1038/s41598-021-96127-8>, Rowden et al. (2023) <doi:10.3390/pathogens12020309>, Haley et al. (2013) <doi:10.1371/journal.pone.0081488>, and Mair and Wilcox (2020) <doi:10.3758/s13428-019-01246-w>. Please refer to the original publications for details.
Computes normalized cycle threshold (Ct) values (delta Ct) from raw quantitative polymerase chain reaction (qPCR) Ct values and conducts test of significance using t.test(). Plots expression values based from log2(2^(-1*delta delta Ct)) across groups per gene of interest. Methods for calculation of delta delta Ct and relative expression (2^(-1*delta delta Ct)) values are described in: Livak & Schmittgen, (2001) <doi:10.1006/meth.2001.1262>.
This software provides tools for quantitative trait mapping in populations such as advanced intercross lines where relatedness among individuals should not be ignored. It can estimate background genetic variance components, impute missing genotypes, simulate genotypes, perform a genome scan for putative quantitative trait loci (QTL), and plot mapping results. It also has functions to calculate identity coefficients from pedigrees, especially suitable for pedigrees that consist of a large number of generations, or estimate identity coefficients from genotypic data in certain circumstances.
Presents an explanatory animation of normal quantile-quantile plots based on a water-filling analogy. The animation presents a normal QQ plot as the parametric plot of the water levels in vases defined by two distributions. The distributions decorate the axes in the normal QQ plot and are optionally shown as vases adjacent to the plot. The package draws QQ plots for several distributions, either as samples or continuous functions.
Conduct multiple quantitative trait loci (QTL) and QTL-by-environment interaction (QEI) mapping via ordinary or compressed variance component mixed models with random- or fixed QTL/QEI effects. First, each position on the genome is detected in order to obtain a negative logarithm P-value curve against genome position. Then, all the peaks on each effect (additive or dominant) curve or on each locus curve are viewed as potential main-effect QTLs and QEIs, all their effects are included in a multi-locus model, their effects are estimated by both least angle regression and empirical Bayes (or adaptive lasso) in backcross and F2 populations, and true QTLs and QEIs are identified by likelihood radio test. See Zhou et al. (2022) <doi:10.1093/bib/bbab596> and Wen et al. (2018) <doi:10.1093/bib/bby058>.
Automates many of the tasks associated with quantitative discourse analysis of transcripts containing discourse including frequency counts of sentence types, words, sentences, turns of talk, syllables and other assorted analysis tasks. The package provides parsing tools for preparing transcript data. Many functions enable the user to aggregate data by any number of grouping variables, providing analysis and seamless integration with other R packages that undertake higher level analysis and visualization of text. This affords the user a more efficient and targeted analysis. qdap is designed for transcript analysis, however, many functions are applicable to other areas of Text Mining/ Natural Language Processing.
Integration of the units and errors packages for a complete quantity calculus system for R vectors, matrices and arrays, with automatic propagation, conversion, derivation and simplification of magnitudes and uncertainties. Documentation about units and errors is provided in the papers by Pebesma, Mailund & Hiebert (2016, <doi:10.32614/RJ-2016-061>) and by Ucar, Pebesma & Azcorra (2018, <doi:10.32614/RJ-2018-075>), included in those packages as vignettes; see citation("quantities") for details.
This package provides a collection of text analysis dictionaries and word lists for use with the qdap package.
Test whether equality and order constraints hold for all individuals simultaneously by comparing Bayesian mixed models through Bayes factors. A tutorial style vignette and a quickstart guide are available, via vignette("manual", "quid"), and vignette("quickstart", "quid") respectively. See Haaf and Rouder (2017) <doi:10.1037/met0000156>; Haaf, Klaassen and Rouder (2019) <doi:10.31234/osf.io/a4xu9>; and Rouder & Haaf (2021) <doi:10.5334/joc.131>.
The computation of quadratic form (QF) distributions is often not trivial and it requires numerical routines. The package contains functions aimed at evaluating the exact distribution of quadratic forms (QFs) and ratios of QFs. In particular, we propose to evaluate density, quantile and distribution functions of positive definite QFs and ratio of independent positive QFs by means of an algorithm based on the numerical inversion of Mellin transforms.
This function performs QR factorization without pivoting to a real or complex matrix. It is based on Anderson. E. and ten others (1999) "LAPACK Users Guide". Third Edition. SIAM.
This package provides a Quantile Rank-score based test for the identification of expression quantitative trait loci.
Dynamically generate tabset panels <https://quarto.org/docs/output-formats/html-basics.html#tabsets> in Quarto HTML documents using a data frame as input.
This function produces both the numerical and graphical summaries of the QTL hotspot detection in the genomes that are available on the worldwide web including the flanking markers of QTLs.
It includes test for multivariate normality, test for uniformity on the d-dimensional Sphere, non-parametric two- and k-sample tests, random generation of points from the Poisson kernel-based density and clustering algorithm for spherical data. For more information see Saraceno G., Markatou M., Mukhopadhyay R. and Golzy M. (2024) <doi:10.48550/arXiv.2402.02290> Markatou, M. and Saraceno, G. (2024) <doi:10.48550/arXiv.2407.16374>, Ding, Y., Markatou, M. and Saraceno, G. (2023) <doi:10.5705/ss.202022.0347>, and Golzy, M. and Markatou, M. (2020) <doi:10.1080/10618600.2020.1740713>.
An implementation of dimension reduction techniques for conditional quantiles. Nonparametric estimation of conditional quantiles is also available.
This package implements the robust algorithm for fitting finite mixture models based on quantile regression proposed by Emir et al., 2017 (unpublished).
The queueing model of visual search models the accuracy and response time data in a visual search experiment using queueing models with finite customer population and stopping criteria of completing the service for finite number of customers. It implements the conceptualization of a hybrid model proposed by Moore and Wolfe (2001), in which visual stimuli enter the processing one after the other and then are identified in parallel. This package provides functions that simulate the specified queueing process and calculate the Wasserstein distance between the empirical response times and the model prediction.
Code for centroid, median and quantile classifiers.
Various quantile-based clustering algorithms: algorithm CU (Common theta and Unscaled variables), algorithm CS (Common theta and Scaled variables through lambda_j), algorithm VU (Variable-wise theta_j and Unscaled variables) and algorithm VW (Variable-wise theta_j and Scaled variables through lambda_j). Hennig, C., Viroli, C., Anderlucci, L. (2019) "Quantile-based clustering." Electronic Journal of Statistics. 13 (2) 4849 - 4883 <doi:10.1214/19-EJS1640>.
Simulating and estimating peer effect models including the quantile-based specification (Houndetoungan, 2025 <doi:10.48550/arXiv.2506.12920>), and the models with Constant Elasticity of Substitution (CES)-based social norm (Boucher et al., 2024 <doi:10.3982/ECTA21048>).
The approach is based on the closed testing procedure to control familywise error rate in a strong sense. The local tests implemented are Wald-type and rank-score. The method is described in De Santis, et al., (2026), <doi:10.48550/arXiv.2511.07999>.