Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Functionality for generating (randomized) quasi-random numbers in high dimensions.
Extensions of ggplot2 Q-Q plot functionalities.
This package provides functions and tools for creating, visualizing, and investigating properties of continuous-time quantum walks, including efficient calculation of matrices such as the mixing matrix, average mixing matrix, and spectral decomposition of the Hamiltonian. E. Farhi (1997): <arXiv:quant-ph/9706062v2>; C. Godsil (2011) <arXiv:1103.2578v3>.
Analysis of Q methodology, used to identify distinct perspectives existing within a group. This methodology is used across social, health and environmental sciences to understand diversity of attitudes, discourses, or decision-making styles (for more information, see <https://qmethod.org/>). A single function runs the full analysis. Each step can be run separately using the corresponding functions: for automatic flagging of Q-sorts (manual flagging is optional), for statement scores, for distinguishing and consensus statements, and for general characteristics of the factors. The package allows to choose either principal components or centroid factor extraction, manual or automatic flagging, a number of mathematical methods for rotation (or none), and a number of correlation coefficients for the initial correlation matrix, among many other options. Additional functions are available to import and export data (from raw *.CSV, HTMLQ and FlashQ *.CSV, PQMethod *.DAT and easy-htmlq *.JSON files), to print and plot, to import raw data from individual *.CSV files, and to make printable cards. The package also offers functions to print Q cards and to generate Q distributions for study administration. See further details in the package documentation, and in the web pages below, which include a cookbook, guidelines for more advanced analysis (how to perform manual flagging or change the sign of factors), data management, and a graphical user interface (GUI) for online and offline use.
G-computation for a set of time-fixed exposures with quantile-based basis functions, possibly under linearity and homogeneity assumptions. Effect measure modification in this method is a way to assess how the effect of the mixture varies by a binary, categorical or continuous variable. Reference: Alexander P. Keil, Jessie P. Buckley, Katie M. OBrien, Kelly K. Ferguson, Shanshan Zhao, and Alexandra J. White (2019) A quantile-based g-computation approach to addressing the effects of exposure mixtures; <doi:10.1289/EHP5838>.
Empirical adjustment of the distribution of variables originating from (regional) climate model simulations using quantile mapping.
Finding hidden clusters in structured data can be hindered by the presence of masking variables. If not detected, masking variables are used to calculate the overall similarities between units, and therefore the cluster attribution is more imprecise. The algorithm q-vars implements an optimization method to find the variables that most separate units between clusters. In this way, masking variables can be discarded from the data frame and the clustering is more accurate. Tests can be found in Benati et al.(2017) <doi:10.1080/01605682.2017.1398206>.
Based on Alan D. Hutson (1999) <doi:10.1080/02664769922458>, "Calculating nonparametric confidence intervals for quantiles using fractional order statistics", Journal of Applied Statistics, 26:3, 343-353.
Construct message-passing style objects with types and features. Q7 types uses composition instead of inheritance in creating derived types, allowing defining any code segment as feature and associating any feature to any object. Compared to R6, Q7 is simpler and more flexible, and is more friendly in syntax.
Calculate the risk of developing type 2 diabetes using risk prediction algorithms derived by ClinRisk'.
For QTL mapping, this package comprises several functions designed to execute diverse tasks, such as simulating or analyzing data, calculating significance thresholds, and visualizing QTL mapping results. The single-QTL or multiple-QTL method, which enables the fitting and comparison of various statistical models, is employed to analyze the data for estimating QTL parameters. The models encompass linear regression, permutation tests, normal mixture models, and truncated normal mixture models. The Gaussian stochastic process is utilized to compute significance thresholds for QTL detection on a genetic linkage map within experimental populations. Two types of data, complete genotyping, and selective genotyping data from various experimental populations, including backcross, F2, recombinant inbred (RI) populations, and advanced intercrossed (AI) populations, are considered in the QTL mapping analysis. For QTL hotspot detection, statistical methods can be developed based on either utilizing individual-level data or summarized data. We have proposed a statistical framework capable of handling both individual-level data and summarized QTL data for QTL hotspot detection. Our statistical framework can overcome the underestimation of thresholds resulting from ignoring the correlation structure among traits. Additionally, it can identify different types of hotspots with minimal computational cost during the detection process. Here, we endeavor to furnish the R codes for our QTL mapping and hotspot detection methods, intended for general use in genes, genomics, and genetics studies. The QTL mapping methods for the complete and selective genotyping designs are based on the multiple interval mapping (MIM) model proposed by Kao, C.-H. , Z.-B. Zeng and R. D. Teasdale (1999) <doi: 10.1534/genetics.103.021642> and H.-I Lee, H.-A. Ho and C.-H. Kao (2014) <doi: 10.1534/genetics.114.168385>, respectively. The QTL hotspot detection analysis is based on the method by Wu, P.-Y., M.-.H. Yang, and C.-H. Kao (2021) <doi: 10.1093/g3journal/jkab056>.
Full text, in data frames containing one row per verse, of the Qur'an in Arabic (with and without vowels) and in English (the Yusuf Ali and Saheeh International translations), formatted to be convenient for text analysis.
Estimation and inference methods for the cross-quantilogram. The cross-quantilogram is a measure of nonlinear dependence between two variables, based on either unconditional or conditional quantile functions. It can be considered an extension of the correlogram, which is a correlation function over multiple lag periods that mainly focuses on linear dependency. One can use the cross-quantilogram to detect the presence of directional predictability from one time series to another. This package provides a statistical inference method based on the stationary bootstrap. For detailed theoretical and empirical explanations, see Linton and Whang (2007) for univariate time series analysis and Han, Linton, Oka and Whang (2016) for multivariate time series analysis. The full references for these key publications are as follows: (1) Linton, O., and Whang, Y. J. (2007). The quantilogram: with an application to evaluating directional predictability. Journal of Econometrics, 141(1), 250-282 <doi:10.1016/j.jeconom.2007.01.004>; (2) Han, H., Linton, O., Oka, T., and Whang, Y. J. (2016). The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series. Journal of Econometrics, 193(1), 251-270 <doi:10.1016/j.jeconom.2016.03.001>.
This package provides a collection of (wrapper) functions the creator found useful for quickly placing data summaries and formatted regression results into .Rnw or .Rmd files. Functions for generating commonly used graphics, such as receiver operating curves or Bland-Altman plots, are also provided by qwraps2'. qwraps2 is a updated version of a package qwraps'. The original version qwraps was never submitted to CRAN but can be found at <https://github.com/dewittpe/qwraps/>. The implementation and limited scope of the functions within qwraps2 <https://github.com/dewittpe/qwraps2/> is fundamentally different from qwraps'.
General purpose toolbox for simulating quantum versions of game theoretic models (Flitney and Abbott 2002) <arXiv:quant-ph/0208069>. Quantum (Nielsen and Chuang 2010, ISBN:978-1-107-00217-3) versions of models that have been handled are: Penny Flip Game (David A. Meyer 1998) <arXiv:quant-ph/9804010>, Prisoner's Dilemma (J. Orlin Grabbe 2005) <arXiv:quant-ph/0506219>, Two Person Duel (Flitney and Abbott 2004) <arXiv:quant-ph/0305058>, Battle of the Sexes (Nawaz and Toor 2004) <arXiv:quant-ph/0110096>, Hawk and Dove Game (Nawaz and Toor 2010) <arXiv:quant-ph/0108075>, Newcomb's Paradox (Piotrowski and Sladkowski 2002) <arXiv:quant-ph/0202074> and Monty Hall Problem (Flitney and Abbott 2002) <arXiv:quant-ph/0109035>.
This package provides a brms'-like interface for fitting Bayesian regression models using INLA (Integrated Nested Laplace Approximations) and TMB (Template Model Builder). The package offers faster model fitting while maintaining familiar brms syntax and output formats. Supports fixed and mixed effects models, multiple probability distributions, conditional effects plots, and posterior predictive checks with summary methods compatible with brms'. TMB integration provides fast ordinal regression capabilities. Implements methods adapted from emmeans for marginal means estimation and bayestestR for Bayesian inference assessment. Methods are based on Rue et al. (2009) <doi:10.1111/j.1467-9868.2008.00700.x>, Kristensen et al. (2016) <doi:10.18637/jss.v070.i05>, Lenth (2016) <doi:10.18637/jss.v069.i01>, Bürkner (2017) <doi:10.18637/jss.v080.i01>, Makowski et al. (2019) <doi:10.21105/joss.01541>, and Kruschke (2014, ISBN:9780124058880).
Given inputs A,B and C, this package solves the matrix equation A*X^2 - B*X - C = 0.
This package provides functions for estimating the potential dispersal of tree species using regeneration densities and dispersal distances to nearest seed trees. A quantile regression is implemented to determine the dispersal potential. Spatial prediction can be used to identify natural regeneration potential for forest restoration as described in Axer et al (2021) <doi:10.1016/j.foreco.2020.118802>.
This function aims to calculate risk of developing cardiovascular disease of individual patients in next 10 years. This unofficial package was based on published open-sourced free risk prediction algorithm QRISK3-2017 <https://qrisk.org/src.php>.
The QRI_func() function performs quantile regression analysis using age and sex as predictors to calculate the Quantile Regression Index (QRI) score for each individualâ s regional brain imaging metrics and then averages across the regional scores to generate an average tissue specific score for each subject. The QRI_plot() is used to plot QRI and generate the normative curves for individual measurements.
This package provides a re-implementation of quantile kriging. Quantile kriging was described by Plumlee and Tuo (2014) <doi:10.1080/00401706.2013.860919>. With computational savings when dealing with replication from the recent paper by Binois, Gramacy, and Ludovski (2018) <doi:10.1080/10618600.2018.1458625> it is now possible to apply quantile kriging to a wider class of problems. In addition to fitting the model, other useful tools are provided such as the ability to automatically perform leave-one-out cross validation.
To construct a model in 2-D space from 2-D nonlinear dimension reduction data and then lift it to the high-dimensional space. Additionally, provides tools to visualise the model overlay the data in 2-D and high-dimensional space. Furthermore, provides summaries and diagnostics to evaluate the nonlinear dimension reduction layout.
Quantile correlation-sure independence screening (QC-SIS) and composite quantile correlation-sure independence screening (CQC-SIS) for ultrahigh-dimensional data.
This package provides functions to Simultaneously Infer Causal Graphs and Genetic Architecture. Includes acyclic and cyclic graphs for data from an experimental cross with a modest number (<10) of phenotypes driven by a few genetic loci (QTL). Chaibub Neto E, Keller MP, Attie AD, Yandell BS (2010) Causal Graphical Models in Systems Genetics: a unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. Annals of Applied Statistics 4: 320-339. <doi:10.1214/09-AOAS288>.