Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to convert data structures among the qtl2', qtl', and DOQTL packages for mapping quantitative trait loci (QTL).
Routines in qtl2 to study allele patterns in quantitative trait loci (QTL) mapping over a chromosome. Useful in crosses with more than two alleles to identify how sets of alleles, genetically different strands at the same locus, have different response levels. Plots show profiles over a chromosome. Can handle multiple traits together. See <https://github.com/byandell/qtl2pattern>.
This package provides functions for making run charts, Shewhart control charts and Pareto charts for continuous quality improvement. Included control charts are: I, MR, Xbar, S, T, C, U, U', P, P', and G charts. Non-random variation in the form of minor to moderate persistent shifts in data over time is identified by the Anhoej rules for unusually long runs and unusually few crossing [Anhoej, Olesen (2014) <doi:10.1371/journal.pone.0113825>]. Non-random variation in the form of larger, possibly transient, shifts is identified by Shewhart's 3-sigma rule [Mohammed, Worthington, Woodall (2008) <doi:10.1136/qshc.2004.012047>].
This package provides a multivariate copula-based dependence measure. For more information, see Griessenberger, Junker, Trutschnig (2022), On a multivariate copula-based dependence measure and its estimation, Electronic Journal of Statistics, 16, 2206-2251.
This package provides functions for interacting directly with the Quandl API to offer data in a number of formats usable in R, downloading a zip with all data from a Quandl database, and the ability to search. This R package uses the Quandl API. For more information go to <https://docs.quandl.com>. For more help on the package itself go to <https://www.quandl.com/tools/r>.
This package provides a collection of text analysis dictionaries and word lists for use with the qdap package.
Run lapply() calls in parallel by submitting them to gridengine clusters using the qsub command.
Density, distribution function, quantile function and random generation for the q-gaussian distribution with parameters mu and sig.
Translate SQL SELECT statements into lists of R expressions.
Values different types of assets and calibrates discount curves for quantitative financial analysis. It covers fixed coupon assets, floating note assets, interest and cross currency swaps with different payment frequencies. Enables the calibration of spot, instantaneous forward and basis curves, making it a powerful tool for accurate and flexible bond valuation and curve generation. The valuation and calibration techniques presented here are consistent with industry standards and incorporates author's own calculations. Tuckman, B., Serrat, A. (2022, ISBN: 978-1-119-83555-4).
The new QOI file format offers a very simple but efficient image compression algorithm. This package provides an easy and simple way to read, write and display bitmap images stored in the QOI (Quite Ok Image) format. It can read and write both files and in-memory raw vectors.
Mortality rates are typically provided in an abridged format, i.e., by age groups 0, [1, 5], [5, 10]', [10, 15]', and so on. Some applications necessitate a detailed (single) age description. Despite the large number of proposed approaches in the literature, only a few methods ensure great performance at both younger and higher ages. For example, the 6-term Lagrange interpolation function is well suited to mortality interpolation at younger ages (with irregular intervals), but not at older ages. The Karup-King method, on the other hand, performs well at older ages but is not suitable for younger ones. Interested readers can find a full discussion of the two stated methods in the book Shryock, Siegel, and Associates (1993).The Q2q package combines the two methods to allow for the interpolation of mortality rates across all age groups. It begins by implementing each method independently, and then the resulting curves are linked using a 5-age averaged error between the two partial curves.
This R package assists breeders in linking data systems with their analytic pipelines, a crucial step in digitizing breeding processes. It supports querying and retrieving phenotypic and genotypic data from systems like EBS <https://ebs.excellenceinbreeding.org/>, BMS <https://bmspro.io>, BreedBase <https://breedbase.org>, GIGWA <https://github.com/SouthGreenPlatform/Gigwa2> (using BrAPI <https://brapi.org> calls), , and Germinate <https://germinateplatform.github.io/get-germinate/>. Extra helper functions support environmental data sources, including TerraClimate <https://www.climatologylab.org/terraclimate.html> and FAO HWSDv2 <https://gaez.fao.org/pages/hwsd> soil database.
Joint estimation of quantile specific intercept and slope parameters in a linear regression setting.
Programmatically access the Quickbase JSON API <https://developer.quickbase.com>. You supply parameters for an API call, qbr delivers an http request to the API endpoint and returns its response. Outputs follow tidyverse philosophy.
This package implements a suite of tools for outlier detection and treatment in data mining. It includes univariate methods (Z-score, Interquartile Range), multivariate detection using Mahalanobis distance, and density-based detection (Local Outlier Factor) via the dbscan package. It also provides functions for visualization using ggplot2 and data cleaning via Winsorization.
This package provides methods to determine, smooth and plot quantile periodograms for univariate and multivariate time series. See Kley (2016) <doi:10.18637/jss.v070.i03> for a description and tutorial.
Simplifies output suppression logic in R packages, as it's common to develop some form of it in R. quietR intends to simplify that problem and allow a set of simple toggle functions to be used to suppress console output.
There are three functions: qol, miss_qol and miss_patient takes input of the data set containing the answers of QOL questionnaire. It will compute the three types of domain based scale scores: Global, Functional, and Symptoms. In case of missing data, the miss_qol and miss_patient functions will make the required changes and then calculate the domain-wise scale scores. Finally, provide an output replacing the question columns with the domain-based scale scores in the original data set.
This package implements the Quantitative Classification-based on Association Rules (QCBA) algorithm (<doi:10.1007/s10489-022-04370-x>). QCBA postprocesses rule classification models making them typically smaller and in some cases more accurate. Supported are CBA implementations from rCBA', arulesCBA and arc packages, and CPAR', CMAR', FOIL2 and PRM implementations from arulesCBA package and SBRL implementation from the sbrl package. The result of the post-processing is an ordered CBA-like rule list.
For fitting N-mixture models using either FFT or asymptotic approaches. FFT N-mixture models extend the work of Cowen et al. (2017) <doi:10.1111/biom.12701>. Asymptotic N-mixture models extend the work of Dail and Madsen (2011) <doi:10.1111/j.1541-0420.2010.01465.x>, to consider asymptotic solutions to the open population N-mixture models. The FFT models are derived and described in "Parker, M.R.P., Elliott, L., Cowen, L.L.E. (2022). Computational efficiency and precision for replicated-count and batch-marked hidden population models [Manuscript in preparation]. Department of Statistics and Actuarial Sciences, Simon Fraser University.". The asymptotic models are derived and described in: "Parker, M.R.P., Elliott, L., Cowen, L.L.E., Cao, J. (2022). Fast asymptotic solutions for N-mixtures on large populations [Manuscript in preparation]. Department of Statistics and Actuarial Sciences, Simon Fraser University.".
Evaluates moments of ratios (and products) of quadratic forms in normal variables, specifically using recursive algorithms developed by Bao and Kan (2013) <doi:10.1016/j.jmva.2013.03.002> and Hillier et al. (2014) <doi:10.1017/S0266466613000364>. Also provides distribution, quantile, and probability density functions of simple ratios of quadratic forms in normal variables with several algorithms. Originally developed as a supplement to Watanabe (2023) <doi:10.1007/s00285-023-01930-8> for evaluating average evolvability measures in evolutionary quantitative genetics, but can be used for a broader class of statistics. Generating functions for these moments are also closely related to the top-order zonal and invariant polynomials of matrix arguments.
Computes normalized cycle threshold (Ct) values (delta Ct) from raw quantitative polymerase chain reaction (qPCR) Ct values and conducts test of significance using t.test(). Plots expression values based from log2(2^(-1*delta delta Ct)) across groups per gene of interest. Methods for calculation of delta delta Ct and relative expression (2^(-1*delta delta Ct)) values are described in: Livak & Schmittgen, (2001) <doi:10.1006/meth.2001.1262>.
This package provides a sigmoidal quantile function estimator based on a newly defined generalized expectile function. The generalized sigmoidal quantile function can estimate quantiles beyond the range of the data, which is important for certain applications given smaller sample sizes. The package is based on the method introduced in Hutson (2024) <doi:10.1080/03610918.2022.2032161>.