Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Supports calculations and visualization for renewable power systems and the environment. Analysis and graphical tools for DC and AC circuits and their use in electric power systems. Analysis and graphical tools for thermodynamic cycles and heat engines, supporting efficiency calculations in coal-fired power plants, gas-fired power plants. Calculations of carbon emissions and atmospheric CO2 dynamics. Analysis of power flow and demand for the grid, as well as power models for microgrids and off-grid systems. Provides resource and power generation for hydro power, wind power, and solar power.
We provide an Rcmdr plug-in based on the depthTools package, which implements different robust statistical tools for the description and analysis of gene expression data based on the Modified Band Depth, namely, the scale curves for visualizing the dispersion of one or various groups of samples (e.g. types of tumors), a rank test to decide whether two groups of samples come from a single distribution and two methods of supervised classification techniques, the DS and TAD methods.
Some response-adaptive randomization methods commonly found in literature are included in this package. These methods include the randomized play-the-winner rule for binary endpoint (Wei and Durham (1978) <doi:10.2307/2286290>), the doubly adaptive biased coin design with minimal variance strategy for binary endpoint (Atkinson and Biswas (2013) <doi:10.1201/b16101>, Rosenberger and Lachin (2015) <doi:10.1002/9781118742112>) and maximal power strategy targeting Neyman allocation for binary endpoint (Tymofyeyev, Rosenberger, and Hu (2007) <doi:10.1198/016214506000000906>) and RSIHR allocation with each letter representing the first character of the names of the individuals who first proposed this rule (Youngsook and Hu (2010) <doi:10.1198/sbr.2009.0056>, Bello and Sabo (2016) <doi:10.1080/00949655.2015.1114116>), A-optimal Allocation for continuous endpoint (Sverdlov and Rosenberger (2013) <doi:10.1080/15598608.2013.783726>), Aa-optimal Allocation for continuous endpoint (Sverdlov and Rosenberger (2013) <doi:10.1080/15598608.2013.783726>), generalized RSIHR allocation for continuous endpoint (Atkinson and Biswas (2013) <doi:10.1201/b16101>), Bayesian response-adaptive randomization with a control group using the Thall \& Wathen method for binary and continuous endpoints (Thall and Wathen (2007) <doi:10.1016/j.ejca.2007.01.006>) and the forward-looking Gittins index rule for binary and continuous endpoints (Villar, Wason, and Bowden (2015) <doi:10.1111/biom.12337>, Williamson and Villar (2019) <doi:10.1111/biom.13119>).
R infrastructure for optimally robust estimation in general smoothly parameterized models using S4 classes and methods as described Kohl, M., Ruckdeschel, P., and Rieder, H. (2010), <doi:10.1007/s10260-010-0133-0>, and in Rieder, H., Kohl, M., and Ruckdeschel, P. (2008), <doi:10.1007/s10260-007-0047-7>.
Much as roxygen2 allows one to document functions in the same file as the function itself, roxut allows one to write the unit tests in the same file as the function. Once processed, the unit tests are moved to the appropriate directory. Currently supports testthat and tinytest frameworks. The roxygen2 package provides much of the infrastructure.
Generates random walks of various types by providing a set of functions that are compatible with the tidyverse'. The functions provided in the package make it simple to create random walks with a variety of properties, such as how many simulations to run, how many steps to take, and the distribution of random walk itself.
Using the efficient implementation in the Boost C++ library, functions are provided to generate vectors of Universally Unique Identifiers (UUID) from R supporting random (version 4), name (version 5) and time (version 7) UUIDs'. The initial repository was at <https://gitlab.com/artemklevtsov/rcppuuid>.
This package provides R functions to selectively rasterize components of grid output.
Assists in statistical model building to find optimal and semi-optimal higher order interactions and best subsets. Uses the lm(), glm(), and other R functions to fit models generated from a feasible solution algorithm. Discussed in Subset Selection in Regression, A Miller (2002). Applied and explained for least median of squares in Hawkins (1993) <doi:10.1016/0167-9473(93)90246-P>. The feasible solution algorithm comes up with model forms of a specific type that can have fixed variables, higher order interactions and their lower order terms.
Sundry discrete probability distributions and helper functions.
This package provides robust parameter tuning and model training for predictive models applied across data sources where the data distribution varies slightly from source to source. This package implements three primary tuning methods: cross-validation-based internal tuning, external tuning, and the RobustTuneC method. External tuning includes a conservative option where parameters are tuned internally on the training data and validating on an external dataset, providing a slightly pessimistic estimate. It supports Lasso, Ridge, Random Forest, Boosting, and Support Vector Machine classifiers. Currently, only binary classification is supported. The response variable must be the first column of the dataset and a factor with exactly two levels. The tuning methods are based on the paper by Nicole Ellenbach, Anne-Laure Boulesteix, Bernd Bischl, Kristian Unger, and Roman Hornung (2021) "Improved Outcome Prediction Across Data Sources Through Robust Parameter Tuning" <doi:10.1007/s00357-020-09368-z>.
Ensemble model, for classification, regression and unsupervised learning, based on a forest of unpruned and randomized binary decision trees. Each tree is grown by sampling, with replacement, a set of variables at each node. Each cut-point is generated randomly, according to the continuous Uniform distribution. For each tree, data are either bootstrapped or subsampled. The unsupervised mode introduces clustering, dimension reduction and variable importance, using a three-layer engine. Random Uniform Forests are mainly aimed to lower correlation between trees (or trees residuals), to provide a deep analysis of variable importance and to allow native distributed and incremental learning.
This package provides functions to access, search and download spacetime earth observation data via SpatioTemporal Asset Catalog (STAC). This package supports the version 1.0.0 (and older) of the STAC specification (<https://github.com/radiantearth/stac-spec>). For further details see Simoes et al. (2021) <doi:10.1109/IGARSS47720.2021.9553518>.
This package provides a modified implementation of stepwise regression that greedily searches the space of interactions among features in order to build polynomial regression models. Furthermore, the hypothesis tests conducted are valid-post model selection due to the use of a revisiting procedure that implements an alpha-investing rule. As a result, the set of rejected sequential hypotheses is proven to control the marginal false discover rate. When not searching for polynomials, the package provides a statistically valid algorithm to run and terminate stepwise regression. For more information, see Johnson, Stine, and Foster (2019) <arXiv:1510.06322>.
Analyze multi-level one-way experimental designs where there are unequal sample sizes and population variance homogeneity can not be assumed. To conduct the Gabriel test <doi:10.2307/2286265>, create two vectors: one for your observations and one for the factor level of each observation. The function, rgabriel, conduct the test and save the output as a vector to input into the gabriel.plot function, which produces a confidence interval plot for Multiple Comparison.
Client for Rserve, allowing to connect to Rserve instances and issue commands.
Recursive algorithms for computing various relatedness coefficients, including pairwise kinship, kappa and identity coefficients. Both autosomal and X-linked coefficients are computed. Founders are allowed to be inbred, which enables construction of any given kappa coefficients, as described in Vigeland (2020) <doi:10.1007/s00285-020-01505-x>. In addition to the standard coefficients, ribd also computes a range of lesser-known coefficients, including generalised kinship coefficients, multi-person coefficients and two-locus coefficients (Vigeland, 2023, <doi:10.1093/g3journal/jkac326>). Many features of ribd are available through the online app QuickPed at <https://magnusdv.shinyapps.io/quickped>; see Vigeland (2022) <doi:10.1186/s12859-022-04759-y>.
Simple, native RethinkDB client.
Collection of functions designed to compute risk-based portfolios as described in Ardia et al. (2017) <doi:10.1007/s10479-017-2474-7> and Ardia et al. (2017) <doi:10.21105/joss.00171>.
This package provides a novel ensemble method employing Support Vector Machines (SVMs) as base learners. This powerful ensemble model is designed for both classification (Ara A., et. al, 2021) <doi:10.6339/21-JDS1014>, and regression (Ara A., et. al, 2021) <doi:10.1016/j.eswa.2022.117107> problems, offering versatility and robust performance across different datasets and compared with other consolidated methods as Random Forests (Maia M, et. al, 2021) <doi:10.6339/21-JDS1025>.
This package provides tools for randomization-based inference. Current focus is on the d^2 omnibus test of differences of means following Hansen and Bowers (2008) <doi:10.1214/08-STS254> . This test is useful for assessing balance in matched observational studies or for analysis of outcomes in block-randomized experiments.
Recursive partitioning methods to build classification trees for ordinal responses within the CART framework. Trees are grown using the Generalized Gini impurity function, where the misclassification costs are given by the absolute or squared differences in scores assigned to the categories of the response. Pruning is based on the total misclassification rate or on the total misclassification cost.
This package provides a piped query generator based on Edgar F. Codd's relational algebra, and on production experience using SQL and dplyr at big data scale. The design represents an attempt to make SQL more teachable by denoting composition by a sequential pipeline notation instead of nested queries or functions. The implementation delivers reliable high performance data processing on large data systems such as Spark', databases, and data.table'. Package features include: data processing trees or pipelines as observable objects (able to report both columns produced and columns used), optimized SQL generation as an explicit user visible table modeling step, plus explicit query reasoning and checking.
Focused on linear, quadratic and cubic regression models, it has a function for calculating the models, obtaining a list with their parameters, and a function for making the graphs for the respective models.