Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
BEAST is a Bayesian estimator of abrupt change, seasonality, and trend for decomposing univariate time series and 1D sequential data. Interpretation of time series depends on model choice; different models can yield contrasting or contradicting estimates of patterns, trends, and mechanisms. BEAST alleviates this by abandoning the single-best-model paradigm and instead using Bayesian model averaging over many competing decompositions. It detects and characterizes abrupt changes (changepoints, breakpoints, structural breaks, joinpoints), cyclic or seasonal variation, and nonlinear trends. BEAST not only detects when changes occur but also quantifies how likely the changes are true. It estimates not just piecewise linear trends but also arbitrary nonlinear trends. BEAST is generically applicable to any real-valued time series, such as those from remote sensing, economics, climate science, ecology, hydrology, and other environmental and biological systems. Example applications include identifying regime shifts in ecological data, mapping forest disturbance and land degradation from satellite image time series, detecting market trends in economic indicators, pinpointing anomalies and extreme events in climate records, and analyzing system dynamics in biological time series. Details are given in Zhao et al. (2019) <doi:10.1016/j.rse.2019.04.034>.
This package provides functions to perform propensity score matching on rolling entry interventions for which a suitable "entry" date is not observed for nonparticipants. For more details, please reference Witman et al. (2018) <doi:10.1111/1475-6773.13086>.
Upload R data.frame to Arm Treasure Data, see <https://www.treasuredata.com/>. You can execute database or table handling for resources on Arm Treasure Data.
This package provides methods to scan RR interval data for Premature Ventricular Complexes (PVCs) and parameterise and plot the resulting Heart Rate Turbulence (HRT). The methodology of HRT analysis is based on the original publication by Schmidt et al. <doi:10.1016/S0140-6736(98)08428-1> and extended with suggestions from <doi:10.1088/1361-6579/ab98b3>.
Read and write Matlab MAT files from R. The rmatio package supports reading MAT version 4, MAT version 5 and MAT compressed version 5. The rmatio package can write version 5 MAT files and version 5 files with variable compression.
Suite of utilities for accessing and manipulating data from the KoboToolbox API. KoboToolbox is a robust platform designed for field data collection in various disciplines. This package aims to simplify the process of fetching and handling data from the API. Detailed documentation for the KoboToolbox API can be found at <https://support.kobotoolbox.org/api.html>.
Sample size and confidence interval calculations in reversible catalytic models, with applications in malaria research. Further details can be found in the paper by Sepúlveda and Drakeley (2015, <doi:10.1186/s12936-015-0661-z>).
This package performs robust estimation and inference when using covariate adjustment and/or covariate-adaptive randomization in randomized controlled trials. This package is trimmed to reduce the dependencies and validated to be used across industry. See "FDA's final guidance on covariate adjustment"<https://www.regulations.gov/docket/FDA-2019-D-0934>, Tsiatis (2008) <doi:10.1002/sim.3113>, Bugni et al. (2018) <doi:10.1080/01621459.2017.1375934>, Ye, Shao, Yi, and Zhao (2023)<doi:10.1080/01621459.2022.2049278>, Ye, Shao, and Yi (2022)<doi:10.1093/biomet/asab015>, Rosenblum and van der Laan (2010)<doi:10.2202/1557-4679.1138>, Wang et al. (2021)<doi:10.1080/01621459.2021.1981338>, Ye, Bannick, Yi, and Shao (2023)<doi:10.1080/24754269.2023.2205802>, and Bannick, Shao, Liu, Du, Yi, and Ye (2024)<doi:10.48550/arXiv.2306.10213>.
Show physics, math and engineering students how an ODE solver is made and how effective R classes can be for the construction of the equations that describe natural phenomena. Inspiration for this work comes from the book on "Computer Simulations in Physics" by Harvey Gould, Jan Tobochnik, and Wolfgang Christian. Book link: <http://www.compadre.org/osp/items/detail.cfm?ID=7375>.
Enhances the R Optimization Infrastructure ('ROI') package with the Embedded Conic Solver ('ECOS') for solving conic optimization problems.
The tools and utilities to estimate the model described in "Gremlin's in the Data: Identifying the Information Content of Research Subjects" (Howell et al. (2021) <doi:10.1177/0022243720965930>) using conjoint analysis data such as that collected in Sawtooth Software's Lighthouse or Discover products. Additional utilities are included for formatting the input data.
The rankFD() function calculates the Wald-type statistic (WTS) and the ANOVA-type statistic (ATS) for nonparametric factorial designs, e.g., for count, ordinal or score data in a crossed design with an arbitrary number of factors. Brunner, E., Bathke, A. and Konietschke, F. (2018) <doi:10.1007/978-3-030-02914-2>.
Provide function for get data from YouTube Data API <https://developers.google.com/youtube/v3/docs/>, YouTube Analytics API <https://developers.google.com/youtube/analytics/reference/> and YouTube Reporting API <https://developers.google.com/youtube/reporting/v1/reports>.
Estimates the pooled (unadjusted) Receiver Operating Characteristic (ROC) curve, the covariate-adjusted ROC (AROC) curve, and the covariate-specific/conditional ROC (cROC) curve by different methods, both Bayesian and frequentist. Also, it provides functions to obtain ROC-based optimal cutpoints utilizing several criteria. Based on Erkanli, A. et al. (2006) <doi:10.1002/sim.2496>; Faraggi, D. (2003) <doi:10.1111/1467-9884.00350>; Gu, J. et al. (2008) <doi:10.1002/sim.3366>; Inacio de Carvalho, V. et al. (2013) <doi:10.1214/13-BA825>; Inacio de Carvalho, V., and Rodriguez-Alvarez, M.X. (2022) <doi:10.1214/21-STS839>; Janes, H., and Pepe, M.S. (2009) <doi:10.1093/biomet/asp002>; Pepe, M.S. (1998) <http://www.jstor.org/stable/2534001?seq=1>; Rodriguez-Alvarez, M.X. et al. (2011a) <doi:10.1016/j.csda.2010.07.018>; Rodriguez-Alvarez, M.X. et al. (2011a) <doi:10.1007/s11222-010-9184-1>. Please see Rodriguez-Alvarez, M.X. and Inacio, V. (2021) <doi:10.32614/RJ-2021-066> for more details.
Wrapper for the RSpace Electronic Lab Notebook (<https://www.researchspace.com/>) API. This packages provides convenience functions to browse, search, create, and edit your RSpace documents. In addition, it enables filling RSpace templates from R Markdown/Quarto templates or tabular data (e.g., Excel files). This R package is not developed or endorsed by Research Space'.
The method generate() is extended for spatial multi-site stochastic generation of daily precipitation. It generates precipitation occurrence in several sites using logit regression (Generalized Linear Models) and the approach by D.S. Wilks (1998) <doi:10.1016/S0022-1694(98)00186-3> .
This package provides a client library for The Guardian (https://www.guardian.com/) and their API, this package allows users to search for Guardian articles and retrieve both the content and metadata.
An ODBC database interface.
Exploit controlled vocabularies organized on tematres servers.
Streamlined statistical reporting in Rmarkdown environments. Facilitates the automated reporting of descriptive statistics, multiple univariate models, multivariable models and tables combining these outputs. Plotting functions include customisable survival curves, forest plots from logistic and ordinal regression and bivariate comparison plots.
Build regular expressions piece by piece using human readable code. This package is designed for interactive use. For package development, use the rebus.* dependencies.
Resampling Stats (http://www.resample.com) is an add-in for running randomization tests in Excel worksheets. The workflow is (1) to define a statistic of interest that can be calculated from a data table, (2) to randomize rows ad/or columns of a data table to simulate a null hypothesis and (3) and to score the value of the statistic from many randomizations. The relative frequency distribution of the statistic in the simulations is then used to infer the probability of the observed value be generated by the null process (probability of Type I error). This package intends to translate this logic for R for teaching purposes. Keeping the original workflow is favored over performance.
An R interface to Weka (Version 3.9.3). Weka is a collection of machine learning algorithms for data mining tasks written in Java, containing tools for data pre-processing, classification, regression, clustering, association rules, and visualization. Package RWeka contains the interface code, the Weka jar is in a separate package RWekajars'. For more information on Weka see <https://www.cs.waikato.ac.nz/ml/weka/>.
An implementation of functions for the analysis of crime incident or records management system data. The package implements analysis algorithms scaled for city or regional crime analysis units. The package provides functions for kernel density estimation for crime heat maps, geocoding using the Google Maps API, identification of repeat crime incidents, spatio-temporal map comparison across time intervals, time series analysis (forecasting and decomposition), detection of optimal parameters for the identification of near repeat incidents, and near repeat analysis with crime network linkage.