Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An interactive document on the topic of binary logistic regression analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://analyticmodels.shinyapps.io/BinaryLogisticRegressionModelling/>.
Adjusts longitudinal regression models using Bayesian methodology for covariance structures of composite symmetry (SC), autoregressive ones of order 1 AR (1) and autoregressive moving average of order (1,1) ARMA (1,1).
Objective Bayesian inference procedures for the parameters of the multivariate random effects model with application to multivariate meta-analysis. The posterior for the model parameters, namely the overall mean vector and the between-study covariance matrix, are assessed by constructing Markov chains based on the Metropolis-Hastings algorithms as developed in Bodnar and Bodnar (2021) (<arXiv:2104.02105>). The Metropolis-Hastings algorithm is designed under the assumption of the normal distribution and the t-distribution when the Berger and Bernardo reference prior and the Jeffreys prior are assigned to the model parameters. Convergence properties of the generated Markov chains are investigated by the rank plots and the split hat-R estimate based on the rank normalization, which are proposed in Vehtari et al. (2021) (<DOI:10.1214/20-BA1221>).
BEAST2 (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. BEAST2 is a command-line tool. This package provides a way to call BEAST2 from an R function call.
This package provides functions for data augmentation using the Bayesian discount prior method for single arm and two-arm clinical trials, as described in Haddad et al. (2017) <doi:10.1080/10543406.2017.1300907>. The discount power prior methodology was developed in collaboration with the The Medical Device Innovation Consortium (MDIC) Computer Modeling & Simulation Working Group.
Collection of procedures to perform Bayesian analysis on a variety of factor models. Currently, it includes: "Bayesian Exploratory Factor Analysis" (befa) from G. Conti, S. Frühwirth-Schnatter, J.J. Heckman, R. Piatek (2014) <doi:10.1016/j.jeconom.2014.06.008>, an approach to dedicated factor analysis with stochastic search on the structure of the factor loading matrix. The number of latent factors, as well as the allocation of the manifest variables to the factors, are not fixed a priori but determined during MCMC sampling.
This data package contains a subset of the Bodenmiller et al, Nat Biotech 2012 dataset for testing single cell, high dimensional analysis and visualization methods.
This package provides a recently proposed Bayesian BIN model disentangles the underlying processes that enable forecasters and forecasting methods to improve, decomposing forecasting accuracy into three components: bias, partial information, and noise. By describing the differences between two groups of forecasters, the model allows the user to carry out useful inference, such as calculating the posterior probabilities of the treatment reducing bias, diminishing noise, or increasing information. It also provides insight into how much tamping down bias and noise in judgment or enhancing the efficient extraction of valid information from the environment improves forecasting accuracy. This package provides easy access to the BIN model. For further information refer to the paper Ville A. Satopää, Marat Salikhov, Philip E. Tetlock, and Barbara Mellers (2021) "Bias, Information, Noise: The BIN Model of Forecasting" <doi:10.1287/mnsc.2020.3882>.
Parse a BibTeX file to a data.frame to make it accessible for further analysis and visualization.
This package provides squared semi partial correlations, tolerance, Mahalanobis, Likelihood Ratio Chi Square, and Pseudo R Square. Aberson, C. L. (2022) <doi:10.31234/osf.io/s2yqn>.
Estimating the average causal effect based on the Bayesian Adjustment for Confounding (BAC) algorithm.
This package implements a class and methods to work with sets, doing intersection, union, complementary sets, power sets, cartesian product and other set operations in a "tidy" way. These set operations are available for both classical sets and fuzzy sets. Import sets from several formats or from other several data structures.
Implementation of the nonparametric bounds for the average causal effect under an instrumental variable model by Balke and Pearl (Bounds on Treatment Effects from Studies with Imperfect Compliance, JASA, 1997, 92, 439, 1171-1176, <doi:10.2307/2965583>). The package can calculate bounds for a binary outcome, a binary treatment/phenotype, and an instrument with either 2 or 3 categories. The package implements bounds for situations where these 3 variables are measured in the same dataset (trivariate data) or where the outcome and instrument are measured in one study and the treatment/phenotype and instrument are measured in another study (bivariate data).
This package provides a complete toolkit for connecting R environments with Large Language Models (LLMs). Provides utilities for describing R objects, package documentation, and workspace state in plain text formats optimized for LLM consumption. Supports multiple workflows: interactive copy-paste to external chat interfaces, programmatic tool registration with ellmer chat clients, batteries-included chat applications via shinychat', and exposure to external coding agents through the Model Context Protocol. Project configuration files enable stable, repeatable conversations with project-specific context and preferred LLM settings.
Fit beta calibration models and obtain calibrated probabilities from them.
This package performs general Bayesian estimation method of linearâ bilinear models for genotype à environment interaction. The method is explained in Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) (<doi:10.1007/s13253-011-0063-9>).
This package implements the Block-wise Rank in Similarity Graph Edge-count test (BRISE), a rank-based two-sample test designed for block-wise missing data. The method constructs (pattern) pair-wise similarity graphs and derives quadratic test statistics with asymptotic chi-square distribution or permutation-based p-values. It provides both vectorized and congregated versions for flexible inference. The methodology is described in Zhang, Liang, Maile, and Zhou (2025) <doi:10.48550/arXiv.2508.17411>.
Bayes factors and posterior probabilities in Linear models, aimed at provide a formal Bayesian answer to testing and variable selection problems.
State-of-the art algorithms for learning discrete Bayesian network classifiers from data, including a number of those described in Bielza & Larranaga (2014) <doi:10.1145/2576868>, with functions for prediction, model evaluation and inspection.
Implementation of the bootkmeans algorithm, a bootstrap augmented k-means algorithm that returns probabilistic cluster assignments. From paper by Ghashti, J.S., Andrews, J.L. Thompson, J.R.J., Epp, J. and H.S. Kochar (2025), "A bootstrap augmented k-means algorithm for fuzzy partitions" (Submitted).
Routine for fitting regression models for binary rare events with linear and nonlinear covariate effects when using the quantile function of the Generalized Extreme Value random variable.
This package provides functions for exploring and visualising estimation results obtained with BayesX, a free software for estimating structured additive regression models (<https://www.uni-goettingen.de/de/bayesx/550513.html>). In addition, functions that allow to read, write and manipulate map objects that are required in spatial analyses performed with BayesX.
This package provides a set of tools for performing graph theory analysis of brain MRI data. It works with data from a Freesurfer analysis (cortical thickness, volumes, local gyrification index, surface area), diffusion tensor tractography data (e.g., from FSL) and resting-state fMRI data (e.g., from DPABI). It contains a graphical user interface for graph visualization and data exploration, along with several functions for generating useful figures.
Enables the user to infer potential synthetic lethal relationships by analysing relationships between bimodally distributed gene pairs in big gene expression datasets. Enables the user to visualise these candidate synthetic lethal relationships.