Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Transfer REDCap (Research Electronic Data Capture) data to a database, specifically optimized for DuckDB'. Processes data in chunks to handle large datasets without exceeding available memory. Features include data labeling, coded value conversion, and hearing a "quack" sound on success.
Download and handle spatial and temporal data from the CAMELS-CL dataset (Catchment Attributes and Meteorology for Large Sample Studies, Chile) <https://camels.cr2.cl/>, developed by Alvarez-Garreton et al. (2018) <doi:10.5194/hess-22-5817-2018>. The package does not generate new data, it only facilitates direct access to the original dataset for hydrological analyses.
Make it easy to use React in R with htmlwidget scaffolds, helper dependency functions, an embedded Babel transpiler', and examples.
The ability to plot raster graphics in PDF files can be useful when one needs multi-page documents, but the plots contain so many individual elements that (the usual) use of vector graphics results in inconveniently large file sizes. Internally, the package plots each individual page as a PNG, and then combines them in one PDF file.
This package provides a set of tools to process and calculate metrics on point clouds derived from terrestrial LiDAR (Light Detection and Ranging; TLS). Its creation is based on key aspects of the TLS application in forestry and ecology. Currently, the main routines are based on filtering, neighboring features of points, voxelization, canopy structure, and the creation of artificial stands. It is written using data.table and C++ language and in most of the functions it is possible to use parallel processing to speed-up the routines.
This package provides a machine learning package for automatic text classification that makes it simple for novice users to get started with machine learning, while allowing experienced users to easily experiment with different settings and algorithm combinations. The package includes eight algorithms for ensemble classification (svm, slda, boosting, bagging, random forests, glmnet, decision trees, neural networks), comprehensive analytics, and thorough documentation.
Rank-hazard plots Karvanen and Harrell (2009) <DOI:10.1002/sim.3591> visualize the relative importance of covariates in a proportional hazards model. The key idea is to rank the covariate values and plot the relative hazard as a function of ranks scaled to interval [0,1]. The relative hazard is plotted in respect to the reference hazard, which can bee.g. the hazard related to the median of the covariate.
This package provides the Book-Crossing Dataset for the package recommenderlab.
This package provides a useful statistical tool for the construction and analysis of Honeycomb Selection Designs. More information about this type of designs: Fasoula V. (2013) <doi:10.1002/9781118497869.ch6> Fasoula V.A., and Tokatlidis I.S. (2012) <doi:10.1007/s13593-011-0034-0> Fasoulas A.C., and Fasoula V.A. (1995) <doi:10.1002/9780470650059.ch3> Tokatlidis I. (2016) <doi:10.1017/S0014479715000150> Tokatlidis I., and Vlachostergios D. (2016) <doi:10.3390/d8040029>.
Utilities for sparse signal recovery suitable for compressed sensing. L1, L2 and TV penalties, DFT basis matrix, simple sparse signal generator, mutual cumulative coherence between two matrices and examples, Lp complex norm, scaling back regression coefficients.
The Linear Programming via Regularized Least Squares (LPPinv) is a two-stage estimation method that reformulates linear programs as structured least-squares problems. Based on the Convex Least Squares Programming (CLSP) framework, LPPinv solves linear inequality, equality, and bound constraints by (1) constructing a canonical constraint system and computing a pseudoinverse projection, followed by (2) a convex-programming correction stage to refine the solution under additional regularization (e.g., Lasso, Ridge, or Elastic Net). LPPinv is intended for underdetermined and ill-posed linear problems, for which standard solvers fail.
Various statistical, graphics, and data-management functions used by the Rcmdr package in the R Commander GUI for R.
Read and write Matlab MAT files from R. The rmatio package supports reading MAT version 4, MAT version 5 and MAT compressed version 5. The rmatio package can write version 5 MAT files and version 5 files with variable compression.
Parameter estimation, computation of probability, information, and (log-)likelihood, and visualization of item/test characteristic curves and item/test information functions for three uni-dimensional item response theory models: the 3-parameter-logistic model, generalized partial credit model, and graded response model. The full documentation and tutorials are at <https://github.com/xluo11/Rirt>.
R Web Client to TickTrader platform. Provides you access to TickTrader platform through Web API <https://ttlivewebapi.fxopen.net:8443/api/doc/index>.
Allows you to interact with the API of the "Todoist" platform. Todoist <https://www.todoist.com/> provides an online task manager service for teams.
Takes user-provided baseline data from groups of randomised controlled data and assesses whether the observed distribution of baseline p-values, numbers of participants in each group, or categorical variables are consistent with the expected distribution, as an aid to the assessment of integrity concerns in published randomised controlled trials. References (citations in PubMed format in details of each function): Bolland MJ, Avenell A, Gamble GD, Grey A. (2016) <doi:10.1212/WNL.0000000000003387>. Bolland MJ, Gamble GD, Avenell A, Grey A, Lumley T. (2019) <doi:10.1016/j.jclinepi.2019.05.006>. Bolland MJ, Gamble GD, Avenell A, Grey A. (2019) <doi:10.1016/j.jclinepi.2019.03.001>. Bolland MJ, Gamble GD, Grey A, Avenell A. (2020) <doi:10.1111/anae.15165>. Bolland MJ, Gamble GD, Avenell A, Cooper DJ, Grey A. (2021) <doi:10.1016/j.jclinepi.2020.11.012>. Bolland MJ, Gamble GD, Avenell A, Grey A. (2021) <doi:10.1016/j.jclinepi.2021.05.002>. Bolland MJ, Gamble GD, Avenell A, Cooper DJ, Grey A. (2023) <doi:10.1016/j.jclinepi.2022.12.018>. Carlisle JB, Loadsman JA. (2017) <doi:10.1111/anae.13650>. Carlisle JB. (2017) <doi:10.1111/anae.13938>.
Eurostat is the statistical office of the European Union and provides high quality statistics for Europe. Large set of the data is disseminated through the Eurostat database (<https://ec.europa.eu/eurostat/web/main/data/database>). The tools are using the REST API with the Statistical Data and Metadata eXchange (SDMX) Web Services (<https://ec.europa.eu/eurostat/web/user-guides/data-browser/api-data-access/api-detailed-guidelines/sdmx2-1>) to search and download data from the Eurostat database using the SDMX standard.
This package implements sample size and power calculation methods with a focus on balance and fairness in study design, inspired by the Zoroastrian deity Rashnu, the judge who weighs truth. Supports survival analysis and various hypothesis testing frameworks.
This package contains functions to create regulatory-style statistical reports. Originally designed to create tables, listings, and figures for the pharmaceutical, biotechnology, and medical device industries, these reports are generalized enough that they could be used in any industry. Generates text, rich-text, PDF, HTML, and Microsoft Word file formats. The package specializes in printing wide and long tables with automatic page wrapping and splitting. Reports can be produced with a minimum of function calls, and without relying on other table packages. The package supports titles, footnotes, page header, page footers, spanning headers, page by variables, and automatic page numbering.
This package implements various tests, visualizations, and metrics for diagnosing convergence of MCMC chains in phylogenetics. It implements and automates many of the functions of the AWTY package in the R environment, as well as a host of other functions. Warren, Geneva, and Lanfear (2017), <doi:10.1093/molbev/msw279>.
This package performs the Joint and Individual Variation Explained (JIVE) decomposition on a list of data sets when the data share a dimension, returning low-rank matrices that capture the joint and individual structure of the data [O'Connell, MJ and Lock, EF (2016) <doi:10.1093/bioinformatics/btw324>]. It provides two methods of rank selection when the rank is unknown, a permutation test and a Bayesian Information Criterion (BIC) selection algorithm. Also included in the package are three plotting functions for visualizing the variance attributed to each data source: a bar plot that shows the percentages of the variability attributable to joint and individual structure, a heatmap that shows the structure of the variability, and principal component plots.
Plots multiple run charts, finds successive signals of improvement, and revises medians when each signal occurs. Finds runs above, below, or on both sides of the median, and returns a plot and a data.table summarising original medians and any revisions, for all groups within the supplied data.
Computes confidence intervals for binomial or Poisson rates and their differences or ratios. Including the rate (or risk) difference ('RD') or rate ratio (or relative risk, RR') for binomial proportions or Poisson rates, and odds ratio ('OR', binomial only). Also confidence intervals for RD, RR or OR for paired binomial data, and estimation of a proportion from clustered binomial data. Includes skewness-corrected asymptotic score ('SCAS') methods, which have been developed in Laud (2017) <doi:10.1002/pst.1813> from Miettinen and Nurminen (1985) <doi:10.1002/sim.4780040211> and Gart and Nam (1988) <doi:10.2307/2531848>, and in Laud (2025, under review) for paired proportions. The same score produces hypothesis tests that are improved versions of the non-inferiority test for binomial RD and RR by Farrington and Manning (1990) <doi:10.1002/sim.4780091208>, or a generalisation of the McNemar test for paired data. The package also includes MOVER methods (Method Of Variance Estimates Recovery) for all contrasts, derived from the Newcombe method but with options to use equal-tailed intervals in place of the Wilson score method, and generalised for Bayesian applications incorporating prior information. So-called exact methods for strictly conservative coverage are approximated using continuity adjustments, and the amount of adjustment can be selected to avoid over-conservative coverage. Also includes methods for stratified calculations (e.g. meta-analysis), either with fixed effect assumption (matching the CMH test) or incorporating stratum heterogeneity.