Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fits an Ising model to a binary dataset using L1 regularized logistic regression and extended BIC. Also includes a fast lasso logistic regression function for high-dimensional problems. Uses the libLBFGS optimization library by Naoaki Okazaki.
This package provides a client library for The Guardian (https://www.guardian.com/) and their API, this package allows users to search for Guardian articles and retrieve both the content and metadata.
OpenWeatherMap (OWM) <http://openweathermap.org/api> is a service providing weather related data. This package can be used to access current weather data for one location or several locations. It can also be used to forecast weather for 5 days with data for every 3 hours.
Unlock the power of large-scale geospatial analysis, quickly generate high-resolution kernel density visualizations, supporting advanced analysis tasks such as bandwidth-tuning and spatiotemporal analysis. Regardless of the size of your dataset, our library delivers efficient and accurate results. Tsz Nam Chan, Leong Hou U, Byron Choi, Jianliang Xu, Reynold Cheng (2023) <doi:10.1145/3555041.3589401>. Tsz Nam Chan, Rui Zang, Pak Lon Ip, Leong Hou U, Jianliang Xu (2023) <doi:10.1145/3555041.3589711>. Tsz Nam Chan, Leong Hou U, Byron Choi, Jianliang Xu (2022) <doi:10.1145/3514221.3517823>. Tsz Nam Chan, Pak Lon Ip, Kaiyan Zhao, Leong Hou U, Byron Choi, Jianliang Xu (2022) <doi:10.14778/3554821.3554855>. Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Byron Choi, Jianliang Xu (2022) <doi:10.14778/3503585.3503591>. Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Byron Choi, Jianliang Xu (2022) <doi:10.14778/3494124.3494135>. Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Weng Hou Tong, Shivansh Mittal, Ye Li, Reynold Cheng (2021) <doi:10.14778/3476311.3476312>. Tsz Nam Chan, Zhe Li, Leong Hou U, Jianliang Xu, Reynold Cheng (2021) <doi:10.14778/3461535.3461540>. Tsz Nam Chan, Reynold Cheng, Man Lung Yiu (2020) <doi:10.1145/3318464.3380561>. Tsz Nam Chan, Leong Hou U, Reynold Cheng, Man Lung Yiu, Shivansh Mittal (2020) <doi:10.1109/TKDE.2020.3018376>. Tsz Nam Chan, Man Lung Yiu, Leong Hou U (2019) <doi:10.1109/ICDE.2019.00055>.
Read Statistical Data and Metadata Exchange (SDMX) XML data. This the main transmission format used in official statistics. Data can be imported from local SDMX-ML files or a SDMX web-service and will be read in as is into a dataframe object. The RapidXML C++ library <https://rapidxml.sourceforge.net/> is used to parse the XML data.
This package implements ROC (Receiver Operating Characteristic)â Optimizing Binary Classifiers, supporting both linear and kernel models. Both model types provide a variety of surrogate loss functions. In addition, linear models offer multiple regularization penalties, whereas kernel models support a range of kernel functions. Scalability for large datasets is achieved through approximation-based options, which accelerate training and make fitting feasible on large data. Utilities are provided for model training, prediction, and cross-validation. The implementation builds on the ROC-Optimizing Support Vector Machines. For more information, see Hernà ndez-Orallo, José, et al. (2004) <doi:10.1145/1046456.1046489>, presented in the ROC Analysis in AI Workshop (ROCAI-2004).
Download and handle spatial and temporal data from the CAMELS-CL dataset (Catchment Attributes and Meteorology for Large Sample Studies, Chile) <https://camels.cr2.cl/>, developed by Alvarez-Garreton et al. (2018) <doi:10.5194/hess-22-5817-2018>. The package does not generate new data, it only facilitates direct access to the original dataset for hydrological analyses.
Data cleaning including 1) generating datasets for time-series and case-crossover analyses based on raw hospital records, 2) linking individuals to an areal map, 3) picking out cases living within a buffer of certain size surrounding a site, etc. For more information, please refer to Zhang W,etc. (2018) <doi:10.1016/j.envpol.2018.08.030>.
Multivariate regression methodologies including classical reduced-rank regression (RRR) studied by Anderson (1951) <doi:10.1214/aoms/1177729580> and Reinsel and Velu (1998) <doi:10.1007/978-1-4757-2853-8>, reduced-rank regression via adaptive nuclear norm penalization proposed by Chen et al. (2013) <doi:10.1093/biomet/ast036> and Mukherjee et al. (2015) <doi:10.1093/biomet/asx080>, robust reduced-rank regression (R4) proposed by She and Chen (2017) <doi:10.1093/biomet/asx032>, generalized/mixed-response reduced-rank regression (mRRR) proposed by Luo et al. (2018) <doi:10.1016/j.jmva.2018.04.011>, row-sparse reduced-rank regression (SRRR) proposed by Chen and Huang (2012) <doi:10.1080/01621459.2012.734178>, reduced-rank regression with a sparse singular value decomposition (RSSVD) proposed by Chen et al. (2012) <doi:10.1111/j.1467-9868.2011.01002.x> and sparse and orthogonal factor regression (SOFAR) proposed by Uematsu et al. (2019) <doi:10.1109/TIT.2019.2909889>.
This package provides a collection of tools to import and structure the (currently) single-season event, game-log, roster, and schedule data available from <https://www.retrosheet.org>. In particular, the event (a.k.a. play-by-play) files can be especially difficult to parse. This package does the parsing on those files, returning the requested data in the most practical R structure to use for sabermetric or other analyses.
An implementation of Bayesian online changepoint detection (Adams and MacKay (2007) <doi:10.48550/arXiv.0710.3742>) with an option for probability based outlier detection and removal (Wendelberger et. al. (2021) <doi:10.48550/arXiv.2112.12899>). Building on the independent multivariate constant mean model implemented in the R package ocp', this package models multivariate data as multivariate normal about a linear trend, defined by user input covariates, with an unstructured error covariance. Changepoints are identified based on a probability threshold for windows of points.
This package provides tools to help with shiny reactivity. The react object offers an alternative way to call reactive expressions to better identify them in the server code.
This package provides functions to fit Gaussian linear model by maximising the residual log likelihood where the covariance structure can be written as a linear combination of known matrices. Can be used for multivariate models and random effects models. Easy straight forward manner to specify random effects models, including random interactions. Code now optimised to use Sherman Morrison Woodbury identities for matrix inversion in random effects models. We've added the ability to fit models using any kernel as well as a function to return the mean and covariance of random effects conditional on the data (best linear unbiased predictors, BLUPs). Clifford and McCullagh (2006) <https://www.r-project.org/doc/Rnews/Rnews_2006-2.pdf>.
This package provides a user-friendly interface for managing PostgreSQL database connection settings. The package supplies helper functions to create, edit and load connection and option configuration files stored in a user-specific directory using the odbc and RPostgres back ends. These helpers make it easy to construct a reproducible connection string from a configuration file, either by reading user-defined YAML files or by parsing an environment variable.
Supports analysis of spatial data processed with the GeoPAT 2 software <https://github.com/Nowosad/geopat2>. Available features include creation of a grid based on the GeoPAT 2 grid header file and reading a GeoPAT 2 text outputs.
Provide function for work with AcademyOcean API <https://academyocean.com/api>.
Uses a combination of raytracing and multiple hill shading methods to produce 2D and 3D data visualizations and maps. Includes water detection and layering functions, programmable color palette generation, several built-in textures for hill shading, 2D and 3D plotting options, a built-in path tracer, Wavefront OBJ file export, and the ability to save 3D visualizations to a 3D printable format.
Screens all .R', .Rmd', and .qmd files to extract the name of packages used in a project. This package detects packages called with library(foo)', require(foo)', foo::bar() and use("foo", "bar") and adds these dependencies in the DESCRIPTION file in the sections Depends, Imports, and Suggests.
Response surface designs with neighbour effects are suitable for experimental situations where it is expected that the treatment combination administered to one experimental unit may affect the response on neighboring units as well as the response on the unit to which it is applied (Dalal et al.,2025 <doi: 10.57805/revstat.v23i2.513>). Integrating these effects in the response surface model improves the experiment's precision Verma A., Jaggi S., Varghese, E.,Varghese, C.,Bhowmik, A., Datta, A. and Hemavathi M. (2021)<doi: 10.1080/03610918.2021.1890123>). This package includes sym(), asym1(), asym2(), asym3() and asym4() functions that generates response surface designs which are rotatable under a polynomial model of a given order without interaction term incorporating neighbour effects.
This package provides a user-friendly interface to NASA Exoplanets Archive API <https://exoplanetarchive.ipac.caltech.edu/>, enabling retrieval and analysis of exoplanetary and stellar data. Includes functions for querying, filtering, summarizing, and computing derived parameters from the Exoplanets catalog.
Generates disease-specific drug-response profiles that are independent of time, concentration, and cell-line. Based on the cell lines used as surrogates, the returned profiles represent the unique transcriptional changes induced by a compound in a given disease.
This package provides an interface between R and PostGIS'-enabled PostgreSQL databases to transparently transfer spatial data. Both vector (points, lines, polygons) and raster data are supported in read and write modes. Also provides convenience functions to execute common procedures in PostgreSQL/PostGIS'.
Annotate text with entities and the relations between them. Annotate areas of interest in images with your labels. Providing htmlwidgets bindings to the recogito <https://github.com/recogito/recogito-js> and annotorious <https://github.com/recogito/annotorious> libraries.
KEEL is a popular Java software for a large number of different knowledge data discovery tasks. Furthermore, RKEEL is a package with a R code layer between R and KEEL', for using KEEL in R code. This package includes the datasets from KEEL in .dat format for its use in RKEEL package. For more information about KEEL', see <http://www.keel.es/>.