Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fit Bayesian time series models using Stan for full Bayesian inference. A wide range of distributions and models are supported, allowing users to fit Seasonal ARIMA, ARIMAX, Dynamic Harmonic Regression, GARCH, t-student innovation GARCH models, asymmetric GARCH, Random Walks, stochastic volatility models for univariate time series. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their beliefs. Model fit can easily be assessed and compared with typical visualization methods, information criteria such as loglik, AIC, BIC WAIC, Bayes factor and leave-one-out cross-validation methods. References: Hyndman (2017) <doi:10.18637/jss.v027.i03>; Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>.
The goal of this method is to identify associations between bacteria and an environmental variable in 16S or other compositional data. The environmental variable is any variable which is measure for each microbiome sample, for example, a butyrate measurement paired with every sample in the data. Microbiome data is compositional, meaning that the total abundance of each sample sums to 1, and this introduces severe statistical distortions. This method takes a Bayesian approach to correcting for these statistical distortions, in which the total abundance is treated as an unknown variable. This package runs the python implementation using reticulate.
This package provides a highly scientific and utterly addictive bird point count simulator to test statistical assumptions, aid survey design, and have fun while doing it (Solymos 2024 <doi:10.1007/s42977-023-00183-2>). The simulations follow time-removal and distance sampling models based on Matsuoka et al. (2012) <doi:10.1525/auk.2012.11190>, Solymos et al. (2013) <doi:10.1111/2041-210X.12106>, and Solymos et al. (2018) <doi:10.1650/CONDOR-18-32.1>, and sound attenuation experiments by Yip et al. (2017) <doi:10.1650/CONDOR-16-93.1>.
Estimates Bayesian models of list experiments with informative priors. It includes functionalities to estimate different types of list experiment models with varying prior information. See Lu and Traunmüller (2021) <doi:10.2139/ssrn.3871089> for examples and details of estimation.
This package provides an accessible and robust implementation of core BME methodologies for spatial prediction. It enables the systematic integration of heterogeneous data sources including both hard data (precise measurements) and soft interval data (bounded or uncertain observations) while incorporating prior knowledge and supporting variogram-based spatial modeling. The BME methodology is described in Christakos (1990) <doi:10.1007/BF00890661> and Serre and Christakos (1999) <doi:10.1007/s004770050029>.
This package provides some tools for developing and validating prediction models, estimate expected survival of patients and visualize them graphically. Most of the implemented methods are based on penalized regressions such as: the lasso (Tibshirani R (1996)), the elastic net (Zou H et al. (2005) <doi:10.1111/j.1467-9868.2005.00503.x>), the adaptive lasso (Zou H (2006) <doi:10.1198/016214506000000735>), the stability selection (Meinshausen N et al. (2010) <doi:10.1111/j.1467-9868.2010.00740.x>), some extensions of the lasso (Ternes et al. (2016) <doi:10.1002/sim.6927>), some methods for the interaction setting (Ternes N et al. (2016) <doi:10.1002/bimj.201500234>), or others. A function generating simulated survival data set is also provided.
Bimodal Gumbel distribution. General functions for performing extreme value analysis.
This package provides a beginners toolbox to help those in ecology who want to deepen their understanding or utilize Bioacoustics in their work. The package has a number of utilizations from calculating frequency from waveform, performing operations in dB, and determining acoustic range of recorders. The majority of this package is based on key concepts learned from the K. Lisa Yang Center for Conservation Bioacoustics at Cornell University and their associated course: Introduction to Bioacoustics course. More information can be found within the walk through vignettes at <https://github.com/MattyD797/bioSNR/tree/main/vignettes>.
Bootstraps and imputes incomplete datasets. Then performs inference on estimates obtained from analysing the imputed datasets as proposed by von Hippel and Bartlett (2021) <doi:10.1214/20-STS793>.
Offers a flexible formula-based interface for building and training Bayesian Neural Networks powered by Stan'. The package supports modeling complex relationships while providing rigorous uncertainty quantification via posterior distributions. With features like user chosen priors, clear predictions, and support for regression, binary, and multi-class classification, it is well-suited for applications in clinical trials, finance, and other fields requiring robust Bayesian inference and decision-making. References: Neal(1996) <doi:10.1007/978-1-4612-0745-0>.
Generating multiple binary and normal variables simultaneously given marginal characteristics and association structure based on the methodology proposed by Demirtas and Doganay (2012) <DOI:10.1080/10543406.2010.521874>.
Fork-safe, raw access to the Amazon Web Services ('AWS') SDK via the boto3 Python module, and convenient helper functions to query the Simple Storage Service ('S3') and Key Management Service ('KMS'), partial support for IAM', the Systems Manager Parameter Store and Secrets Manager'.
An R interface to the Base dos Dados API <https://basedosdados.org/docs/api_reference_python/>). Authenticate your project, query our tables, save data to disk and memory, all from R.
This package provides tools and code snippets for summarizing nested data, adverse events and REDCap study information.
Blocks units into experimental blocks, with one unit per treatment condition, by creating a measure of multivariate distance between all possible pairs of units. Maximum, minimum, or an allowable range of differences between units on one variable can be set. Randomly assign units to treatment conditions. Diagnose potential interference between units assigned to different treatment conditions. Write outputs to .tex and .csv files. For more information on the methods implemented, see Moore (2012) <doi:10.1093/pan/mps025>.
Utilities for Bratteli graphs. A tree is an example of a Bratteli graph. The package provides a function which generates a LaTeX file that renders the given Bratteli graph. It also provides functions to compute the dimensions of the vertices, the intrinsic kernels and the intrinsic distances. Intrinsic kernels and distances were introduced by Vershik (2014) <doi:10.1007/s10958-014-1958-0>.
This package provides functions to create side-by-side boxplots for a continuous variable grouped by a two-level categorical variable, check normality assumptions using the Shapiro-Wilk test (Shapiro and Wilk (1965) <doi:10.2307/2333709>), and perform appropriate statistical tests such as the independent two-sample t-test (Student (1908) <doi:10.1093/biomet/6.1.1>) or the Mannâ Whitney U test ( Mannâ Whitney (1947) <doi:10.1214/aoms/1177730491>). Returns a publication-ready plot and test statistics including test statistic, degrees of freedom, and p-value.
An R interface for the remote file hosting service Box (<https://www.box.com/>). In addition to uploading and downloading files, this package includes functions which mirror base R operations for local files, (e.g. box_load(), box_save(), box_read(), box_setwd(), etc.), as well as git style functions for entire directories (e.g. box_fetch(), box_push()).
In ancient Chinese mythology, Bai Ze is a divine creature that knows the needs of everything. baizer provides data processing functions frequently used by the author. Hope this package also knows what you want!
The Bayesian Markov renewal mixed models take sequentially observed categorical data with continuous duration times, being either state duration or inter-state duration. These models comprehensively analyze the stochastic dynamics of both state transitions and duration times under the influence of multiple exogenous factors and random individual effect. The default setting flexibly models the transition probabilities using Dirichlet mixtures and the duration times using gamma mixtures. It also provides the flexibility of modeling the categorical sequences using Bayesian Markov mixed models alone, either ignoring the duration times altogether or dividing duration time into multiples of an additional category in the sequence by a user-specific unit. The package allows extensive inference of the state transition probabilities and the duration times as well as relevant plots and graphs. It also includes a synthetic data set to demonstrate the desired format of input data set and the utility of various functions. Methods for Bayesian Markov renewal mixed models are as described in: Abhra Sarkar et al., (2018) <doi:10.1080/01621459.2018.1423986> and Yutong Wu et al., (2022) <doi:10.1093/biostatistics/kxac050>.
This package provides a framework of tools to summarise, visualise, and explore longitudinal data. It builds upon the tidy time series data frames used in the tsibble package, and is designed to integrate within the tidyverse', and tidyverts (for time series) ecosystems. The methods implemented include calculating features for understanding longitudinal data, including calculating summary statistics such as quantiles, medians, and numeric ranges, sampling individual series, identifying individual series representative of a group, and extending the facet system in ggplot2 to facilitate exploration of samples of data. These methods are fully described in the paper "brolgar: An R package to Browse Over Longitudinal Data Graphically and Analytically in R", Nicholas Tierney, Dianne Cook, Tania Prvan (2020) <doi:10.32614/RJ-2022-023>.
Interface to Local Data Bank ('Bank Danych Lokalnych - bdl') API <https://api.stat.gov.pl/Home/BdlApi?lang=en> with set of useful tools like quick plotting and map generating using data from bank.
Efficient Markov Chain Monte Carlo (MCMC) algorithms for the fully Bayesian estimation of vectorautoregressions (VARs) featuring stochastic volatility (SV). Implements state-of-the-art shrinkage priors following Gruber & Kastner (2023) <doi:10.48550/arXiv.2206.04902>. Efficient equation-per-equation estimation following Kastner & Huber (2020) <doi:10.1002/for.2680> and Carrerio et al. (2021) <doi:10.1016/j.jeconom.2021.11.010>.
This package implements Bayesian marginal structural models for causal effect estimation with time-varying treatment and confounding. It includes an extension to handle informative right censoring. The Bayesian importance sampling weights are estimated using JAGS. See Saarela (2015) <doi:10.1111/biom.12269> for methodological details.