Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a computational framework for a pattern-based, zoneless analysis, and visualization of (ethno)racial topography (Dmowska, Stepinski, and Nowosad (2020) <doi:10.1016/j.apgeog.2020.102239>). It is a reimagined approach for analyzing residential segregation and racial diversity based on the concept of landscapeâ used in the domain of landscape ecology.
Enhances the R Optimization Infrastructure ('ROI') package with the clarabel solver for solving convex cone problems. More information about clarabel can be found at <https://oxfordcontrol.github.io/ClarabelDocs/stable/>.
This package provides string arithmetic, reassignment operators, logical operators that handle missing values, and extra logical operators such as floating point equality and all or nothing. The intent is to allow R users to write code that is easier to read, write, and maintain while providing a friendlier experience to new R users from other language backgrounds (such as Python') who are used to concepts such as x += 1 and foo + bar'. Includes operators for not in, easy floating point comparisons, === equivalent, and SQL-like like operations (), etc. We also added in some extra helper functions, such as OS checks, pasting in Oxford comma format, and functions to get the first, last, nth, or most common element of a vector or word in a string.
It is a package that provides alternative approach for finding optimum parameters of ridge regression. This package focuses on finding the ridge parameter value k which makes the variance inflation factors closest to 1, while keeping them above 1 as addressed by Michael Kutner, Christopher Nachtsheim, John Neter, William Li (2004, ISBN:978-0073108742). Moreover, the package offers end-to-end functionality to find optimum k value and presents the detailed ridge regression results. Finally it shows three sets of graphs consisting k versus variance inflation factors, regression coefficients and standard errors of them.
This package provides a method to decompose a univariate time series into meaningful subcomponents for analysis and denoising.
This package implements diversification analyses using the phylogenetic birth-death-shift model. It leverages belief propagation techniques to calculate branch-specific diversification rates, see Kopperud & Hoehna (2025) <doi:10.1093/sysbio/syaf041>.
Generates a project and repo for easy initialization of a GitHub repo for R workshops. The repo includes a README with instructions to ensure that all users have the needed packages, an RStudio project with the right directories and the proper data. The repo can then be used for hosting code taught during the workshop.
This is an R wrapper from the AWS Command Line Interface that provides methods to manage the user configuration on Amazon Web Service. You can create as many profiles as you want, manage them, and delete them. The profiles created with this tool work with all AWS products such as S3, Glacier, and EC2. It also provides a function to automatically install AWS CLI, but you can download it and install it manually if you prefer.
This package provides a general routine, envMU, which allows estimation of the M envelope of span(U) given root n consistent estimators of M and U. The routine envMU does not presume a model. This package implements response envelopes, partial response envelopes, envelopes in the predictor space, heteroscedastic envelopes, simultaneous envelopes, scaled response envelopes, scaled envelopes in the predictor space, groupwise envelopes, weighted envelopes, envelopes in logistic regression, envelopes in Poisson regression envelopes in function-on-function linear regression, envelope-based Partial Partial Least Squares, envelopes with non-constant error covariance, envelopes with t-distributed errors, reduced rank envelopes and reduced rank envelopes with non-constant error covariance. For each of these model-based routines the package provides inference tools including bootstrap, cross validation, estimation and prediction, hypothesis testing on coefficients are included except for weighted envelopes. Tools for selection of dimension include AIC, BIC and likelihood ratio testing. Background is available at Cook, R. D., Forzani, L. and Su, Z. (2016) <doi:10.1016/j.jmva.2016.05.006>. Optimization is based on a clockwise coordinate descent algorithm.
As an advanced approach to computerized adaptive testing (CAT), shadow testing (van der Linden(2005) <doi:10.1007/0-387-29054-0>) dynamically assembles entire shadow tests as a part of selecting items throughout the testing process. Selecting items from shadow tests guarantees the compliance of all content constraints defined by the blueprint. RSCAT is an R package for the shadow-test approach to CAT. The objective of RSCAT is twofold: 1) Enhancing the effectiveness of shadow-test CAT simulation; 2) Contributing to the academic and scientific community for CAT research. RSCAT is currently designed for dichotomous items based on the three-parameter logistic (3PL) model.
The goal of Rthingsboard is to provide interaction with the API of ThingsBoard (<https://thingsboard.io/>), an open-source IoT platform for device management, data collection, processing and visualization.
Robust parameter estimation and prediction of Gaussian stochastic process emulators. It allows for robust parameter estimation and prediction using Gaussian stochastic process emulator. It also implements the parallel partial Gaussian stochastic process emulator for computer model with massive outputs See the reference: Mengyang Gu and Jim Berger, 2016, Annals of Applied Statistics; Mengyang Gu, Xiaojing Wang and Jim Berger, 2018, Annals of Statistics.
An implementation of the QUEFTS (Quantitative Evaluation of the Native Fertility of Tropical Soils) model. The model (1) estimates native nutrient (N, P, K) supply of soils from a few soil chemical properties; and (2) computes crop yield given that supply, crop parameters, fertilizer application, and crop attainable yield. See Janssen et al. (1990) <doi:10.1016/0016-7061(90)90021-Z> for the technical details and Sattari et al. (2014) <doi:10.1016/j.fcr.2013.12.005> for a recent evaluation and improvements.
Create plots to visualize the alignment of a corporate lending financial portfolio to climate change scenarios based on climate indicators (production and emission intensities) across key climate relevant sectors of the PACTA methodology (Paris Agreement Capital Transition Assessment; <https://www.transitionmonitor.com/>). Financial institutions use PACTA to study how their capital allocation decisions align with climate change mitigation goals.
This package provides tools to fit and simulate realizations from relational event models.
This is a port of Jonathan Shewchuk's Triangle library to R. From his description: "Triangle generates exact Delaunay triangulations, constrained Delaunay triangulations, conforming Delaunay triangulations, Voronoi diagrams, and high-quality triangular meshes. The latter can be generated with no small or large angles, and are thus suitable for finite element analysis.".
The significance of mean difference tests in clinical trials is established if at least r null hypotheses are rejected among m that are simultaneously tested. This package enables one to compute necessary sample sizes for single-step (Bonferroni) and step-wise procedures (Holm and Hochberg). These three procedures control the q-generalized family-wise error rate (probability of making at least q false rejections). Sample size is computed (for these single-step and step-wise procedures) in a such a way that the r-power (probability of rejecting at least r false null hypotheses, i.e. at least r significant endpoints among m) is above some given threshold, in the context of tests of difference of means for two groups of continuous endpoints (variables). Various types of structure of correlation are considered. It is also possible to analyse data (i.e., actually test difference in means) when these are available. The case r equals 1 is treated in separate functions that were used in Lafaye de Micheaux et al. (2014) <doi:10.1080/10543406.2013.860156>.
Routines to select and visualize the maxima for a given strict partial order. This especially includes the computation of the Pareto frontier, also known as (Top-k) Skyline operator (see Börzsönyi, et al. (2001) <doi:10.1109/ICDE.2001.914855>), and some generalizations known as database preferences (see Kieà ling (2002) <doi:10.1016/B978-155860869-6/50035-4>).
Generates tile maps for the East Caucasian language family, inspired by the Typological Atlas of the Languages of Daghestan (TALD, <https://lingconlab.ru/tald/>). It leverages ggplot2 to create visually informative maps, displaying rectangles for each language and allowing for color-coding based on linguistic features. The package includes a built-in dataset of 56 languages and the template for their distribution and provides flexibility to customize the tile map's appearance. The default template can be modified via the ability to hide or rename languages. It's designed to be used with external data tables containing language information and features, offering a tool for visualizing the geographic distribution and linguistic characteristics of East Caucasian languages.
An implementation of calculating the R-squared measure as a total mediation effect size measure and its confidence interval for moderate- or high-dimensional mediator models. It gives an option to filter out non-mediators using variable selection methods. The original R package is directly related to the paper Yang et al (2021) "Estimation of mediation effect for high-dimensional omics mediators with application to the Framingham Heart Study" <doi:10.1101/774877>. The new version contains a choice of using cross-fitting, which is computationally faster. The details of the cross-fitting method are available in the paper Xu et al (2023) "Speeding up interval estimation for R2-based mediation effect of high-dimensional mediators via cross-fitting" <doi:10.1101/2023.02.06.527391>.
Adds subtotal rows / sections (a la the SAS Proc Tabulate All option) to a Group By output by running a series of Group By functions with partial sets of the same variables and combining the results with the original. Can be used to add comprehensive information to a data report or to quickly aggregate Group By outputs used to gain a greater understanding of data.
These datasets support the implementation in R of the software PACTA (Paris Agreement Capital Transition Assessment), which is a free tool that calculates the alignment between corporate lending portfolios and climate scenarios (<https://www.transitionmonitor.com/>). Financial institutions use PACTA to study how their capital allocation decisions align with climate change mitigation goals. Because both financial institutions and market data providers keep their data private, this package provides fake, public data to enable the development and use of PACTA in R.
DBI/RJDBC interface to h2 database. h2 version 2.3.232 is included.
Interface to the Dryad "Solr" API, their "OAI-PMH" service, and fetch datasets. Dryad (<https://datadryad.org/>) is a curated host of data underlying scientific publications.