Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
It enables the identification of sequentialexperimentation orders for factorial designs that jointly reduce bias and the number of level changes. The method used is that presented by Conto et al. (2025), known as the Assignment-Expansion method, which consists of adapting the linear programming assignment problem to generate balanced experimentation orders. The properties identified are then generalized to designs with a larger number of factors and levels using the expansion method proposed by Correa et al. (2009) and later generalized by Bhowmik et al. (2017). For more details see Conto et al. (2025) <doi:10.1016/j.cie.2024.110844>, Correa et al. (2009) <doi:10.1080/02664760802499337> and Bhowmik et al. (2017) <doi:10.1080/03610926.2016.1152490>.
Search by keywords in R packages, task views, CRAN, the web and display the results in the console or in txt, html or pdf files. Download the package documentation (html index, README, NEWS, pdf manual, vignettes, source code, binaries) with a single instruction. Visualize the package dependencies and CRAN checks. Compare the package versions, unload and install the packages and their dependencies in a safe order. Explore CRAN archives. Use the above functions for task view maintenance. Access web search engines from the console thanks to 80+ bookmarks. All functions accept standard and non-standard evaluation.
This package provides two general frameworks to generate a multi-layer network. This also provides several methods to reveal the embedding of both nodes and layers. The reference paper can be found from the URL mentioned below. Ting Li, Zhongyuan Lyu, Chenyu Ren, Dong Xia (2023) <arXiv:2302.04437>.
Connector to the REST API of a Rock R server, to perform operations on a remote R server session, or administration tasks. See Rock documentation at <https://rockdoc.obiba.org/>.
Encode network data as strings of printable ASCII characters. Implemented functions include encoding and decoding adjacency matrices, edgelists, igraph, and network objects to/from formats graph6', sparse6', and digraph6'. The formats and methods are described in McKay, B.D. and Piperno, A (2014) <doi:10.1016/j.jsc.2013.09.003>.
Providing wrapper functions to implement Bayesian analysis in JAGS. Some major features include monitoring convergence of a MCMC model using Rubin and Gelman Rhat statistics, automatically running a MCMC model till it converges, and implementing parallel processing of a MCMC model for multiple chains.
Rcmdr interface to the sos package. The plug-in renders the sos searching functionality easily accessible via the Rcmdr menus. It also simplifies the task of performing multiple searches and subsequently obtaining the union or the intersection of the results.
Applies a given global-fit method to random partial tanglegrams of a fixed size to identify the associations, terminals, and nodes that maximize phylogenetic (in)congruence. It also includes functions to compute more easily the confidence intervals of classification metrics and plot results, reducing computational time. See Llaberia-Robledillo et al., (2023) <doi:10.1093/sysbio/syad016>.
As of RStudio v1.3, the preferences in the Global Options dialog (and a number of other preferences that arenĂ¢ t) are now saved in simple, plain-text JSON files. This package provides an interface for working with these RStudio JSON preference files to easily make modifications without using the point-and-click option menus. This is particularly helpful when working on teams to ensure a unified experience across machines and utilizing settings for best practices.
Converts data to STL (stereolithography) files that can be used to feed a 3-dimensional printer. The 3-dimensional output from a function can be materialized into a solid surface in a plastic material, therefore allowing more detailed examination. There are many possible uses for this new tool, such as to examine mathematical expressions with very irregular shapes, to aid teaching people with impaired vision, to create raised relief maps from digital elevation maps (DEMs), to bridge the gap between mathematical tools and rapid prototyping, and many more. Ian Walker created the function r2stl() and Jose Gama assembled the package.
Generic functions to analyze the distribution of two continuous variables: conf2d to calculate a smooth empirical confidence region, and freq2d to calculate a frequency distribution.
Package of data sets from "Mathematical Statistics with Resampling in R" (1st Ed. 2011, 2nd Ed. 2018) by Laura Chihara and Tim Hesterberg.
An implementation to compute an optimal dose escalation rule using deep reinforcement learning in phase I oncology trials (Matsuura et al. (2023) <doi:10.1080/10543406.2023.2170402>). The dose escalation rule can directly optimize the percentages of correct selection (PCS) of the maximum tolerated dose (MTD).
Interface to easily access data via the United States Department of Agriculture (USDA)'s Agricultural Resource Management Survey (ARMS) Data API <https://www.ers.usda.gov/developer/data-apis/arms-data-api/>. The downloaded data can be saved for later off-line use. Also provide relevant information and metadata for each of the input variables needed for sending the data inquery.
Optimal linear combination predictive signatures for maximizing the area between two Receiver Operating Characteristic (ROC) curves (treatment vs. control).
Estimation of both single- and multiple-assignment Regression Discontinuity Designs (RDDs). Provides both parametric (global) and non-parametric (local) estimation choices for both sharp and fuzzy designs, along with power analysis and assumption checks. Introductions to the underlying logic and analysis of RDDs are in Thistlethwaite, D. L., Campbell, D. T. (1960) <doi:10.1037/h0044319> and Lee, D. S., Lemieux, T. (2010) <doi:10.1257/jel.48.2.281>.
An implementation of EDM algorithms based on research software developed for internal use at the Sugihara Lab ('UCSD/SIO'). The package is implemented with Rcpp wrappers around the cppEDM library. It implements the simplex projection method from Sugihara & May (1990) <doi:10.1038/344734a0>, the S-map algorithm from Sugihara (1994) <doi:10.1098/rsta.1994.0106>, convergent cross mapping described in Sugihara et al. (2012) <doi:10.1126/science.1227079>, and, multiview embedding described in Ye & Sugihara (2016) <doi:10.1126/science.aag0863>.
This package provides a cross-validated minimal-optimal feature selection algorithm. It utilises popularity counting, hierarchical clustering with feature dissimilarity measures, and prefiltering with all-relevant feature selection method to obtain the minimal-optimal set of features.
R implementation of Maximum Likelihood Principal Component Analysis The main idea of this package is to have an alternative way of PCA for subspace modeling that considers measurement errors. More details can be found in Peter D. Wentzell (2009) <doi:10.1016/B978-0-444-64165-6.03029-9>.
Authors working with LaTeX articles use the built-in bibliography options and BibTeX files. While this might work with LaTeX', it does not function well with Web articles. As a way out, rebib offers tools to convert and combine bibliographies from both sources.
Interface to the yacas computer algebra system (<http://www.yacas.org/>).
This package implements the regularized exponentially tilted empirical likelihood method. Details of the method are given in Kim, MacEachern, and Peruggia (2023) <doi:10.48550/arXiv.2312.17015>. This work was supported by the U.S. National Science Foundation under Grants No. SES-1921523 and DMS-2015552.
MCFS-ID (Monte Carlo Feature Selection and Interdependency Discovery) is a Monte Carlo method-based tool for feature selection. It also allows for the discovery of interdependencies between the relevant features. MCFS-ID is particularly suitable for the analysis of high-dimensional, small n large p transactional and biological data. M. Draminski, J. Koronacki (2018) <doi:10.18637/jss.v085.i12>.
This package provides a robust and powerful approach is developed for replicability analysis of two Genome-wide association studies (GWASs) accounting for the linkage disequilibrium (LD) among genetic variants. The LD structure in two GWASs is captured by a four-state hidden Markov model (HMM). The unknowns involved in the HMM are estimated by an efficient expectation-maximization (EM) algorithm in combination with a non-parametric estimation of functions. By incorporating information from adjacent locations via the HMM, this approach identifies the entire clusters of genotype-phenotype associated signals, improving the power of replicability analysis while effectively controlling the false discovery rate.