Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package creates a header only package to link to the CGAL (Computational Geometry Algorithms Library) header files in Rcpp'. There are a variety of potential uses for the software such as Hilbert sorting, K-D Tree nearest neighbors, and convex hull algorithms. For more information about how to use the header files, see the CGAL documentation at <https://www.cgal.org>. Currently downloads version 6.1 of the CGAL header files.
Enhances the R Optimization Infrastructure ('ROI') package with the optimx package.
Testing and inference for regression models using residual randomization methods. The basis of inference is an invariance assumption on the regression errors, e.g., clustered errors, or doubly-clustered errors.
Aims at loading Facebook and Instagram advertising data from Smartly.io into R. Smartly.io is an online advertising service that enables advertisers to display commercial ads on social media networks (see <http://www.smartly.io/> for more information). The package offers an interface to query the Smartly.io API and loads data directly into R for further data processing and data analysis.
Rasterize images using a 3D software renderer. 3D scenes are created either by importing external files, building scenes out of the included objects, or by constructing meshes manually. Supports point and directional lights, anti-aliased lines, shadow mapping, transparent objects, translucent objects, multiple materials types, reflection, refraction, environment maps, multicore rendering, bloom, tone-mapping, and screen-space ambient occlusion.
This package provides an interface to vinecopulib', a C++ library for vine copula modeling. The rvinecopulib package implements the core features of the popular VineCopula package, in particular inference algorithms for both vine copula and bivariate copula models. Advantages over VineCopula are a sleeker and more modern API, improved performances, especially in high dimensions, nonparametric and multi-parameter families, and the ability to model discrete variables. The rvinecopulib package includes vinecopulib as header-only C++ library (currently version 0.7.2). Thus users do not need to install vinecopulib itself in order to use rvinecopulib'. Since their initial releases, vinecopulib is licensed under the MIT License, and rvinecopulib is licensed under the GNU GPL version 3.
Hydrologic modelling system is an object oriented tool for simulation and analysis of hydrologic events. The package proposes functions and methods for construction, simulation, visualization, and calibration of a hydrologic model.
Companion package for the book: "Robust Statistics: Theory and Methods, second edition", <http://www.wiley.com/go/maronna/robust>. This package contains code that implements the robust estimators discussed in the recent second edition of the book above, as well as the scripts reproducing all the examples in the book.
This package implements a null model analysis to quantify concurrent temporal niche overlap (i.e., activity or phenology) among biological identities (e.g., individuals, populations, species) using the Rosario randomization algorithm Castro-Arellano et al. (2010) <doi:10.1111/j.2041-210X.2010.00031.x>.
We provide a number of algorithms to estimate fundamental statistics including Fréchet mean and geometric median for manifold-valued data. Also, C++ header files are contained that implement elementary operations on manifolds such as Sphere, Grassmann, and others. See Bhattacharya and Bhattacharya (2012) <doi:10.1017/CBO9781139094764> if you are interested in statistics on manifolds, and Absil et al (2007, ISBN:9780691132983) on computational aspects of optimization on matrix manifolds.
This package provides an interface to the Facebook API.
Inference of relatedness coefficients from a bi-allelic genotype matrix using a Maximum Likelihood estimation, Laporte, F., Charcosset, A. and Mary-Huard, T. (2017) <doi:10.1111/biom.12634>.
Calculate 22 summary statistics coded in C on time-series vectors to enable pattern detection, classification, and regression applications in the feature space as proposed by <doi:10.1007/s10618-019-00647-x>.
Relevant Component Analysis (RCA) tries to find a linear transformation of the feature space such that the effect of irrelevant variability is reduced in the transformed space.
Make it easy to use React in R with htmlwidget scaffolds, helper dependency functions, an embedded Babel transpiler', and examples.
This package provides helper functions for authenticating and retrieving data from your ODK-X Sync Endpoint'. This is an early release intended for testing and feedback.
Build robust and maintainable software with object-oriented design patterns in R. Design patterns abstract and present in neat, well-defined components and interfaces the experience of many software designers and architects over many years of solving similar problems. These are solutions that have withstood the test of time with respect to re-usability, flexibility, and maintainability. R6P provides abstract base classes with examples for a few known design patterns. The patterns were selected by their applicability to analytic projects in R. Using these patterns in R projects have proven effective in dealing with the complexity that data-driven applications possess.
An interface to the Integrated Taxonomic Information System ('ITIS') (<https://www.itis.gov>). Includes functions to work with the ITIS REST API methods (<https://www.itis.gov/ws_description.html>), as well as the Solr web service (<https://www.itis.gov/solr_documentation.html>).
The rfacts package is an R interface to the Fixed and Adaptive Clinical Trial Simulator ('FACTS') on Unix-like systems. It programmatically invokes FACTS to run clinical trial simulations, and it aggregates simulation output data into tidy data frames. These capabilities provide end-to-end automation for large-scale simulation pipelines, and they enhance computational reproducibility. For more information on FACTS itself, please visit <https://www.berryconsultants.com/software/>.
Download the lyrics of your favorite songs in text and table formats. Also search for related songs or song information. More information: <https://docs.genius.com/> .
This is a companion package of the book "R Programming: Zero to Pro" <https://r02pro.github.io/>. It contains the datasets used in the book and provides interactive exercises corresponding to the book. It covers a wide range of topics including visualization, data transformation, tidying data, data input and output.
Construct an explainable nomogram for a machine learning (ML) model to improve availability of an ML prediction model in addition to a computer application, particularly in a situation where a computer, a mobile phone, an internet connection, or the application accessibility are unreliable. This package enables a nomogram creation for any ML prediction models, which is conventionally limited to only a linear/logistic regression model. This nomogram may indicate the explainability value per feature, e.g., the Shapley additive explanation value, for each individual. However, this package only allows a nomogram creation for a model using categorical without or with single numerical predictors. Detailed methodologies and examples are documented in our vignette, available at <https://htmlpreview.github.io/?https://github.com/herdiantrisufriyana/rmlnomogram/blob/master/doc/ml_nomogram_exemplar.html>.
Annotate text with entities and the relations between them. Annotate areas of interest in images with your labels. Providing htmlwidgets bindings to the recogito <https://github.com/recogito/recogito-js> and annotorious <https://github.com/recogito/annotorious> libraries.
Uses the generalized ratio-of-uniforms (RU) method to simulate from univariate and (low-dimensional) multivariate continuous distributions. The user specifies the log-density, up to an additive constant. The RU algorithm is applied after relocation of mode of the density to zero, and the user can choose a tuning parameter r. For details see Wakefield, Gelfand and Smith (1991) <DOI:10.1007/BF01889987>, Efficient generation of random variates via the ratio-of-uniforms method, Statistics and Computing (1991) 1, 129-133. A Box-Cox variable transformation can be used to make the input density suitable for the RU method and to improve efficiency. In the multivariate case rotation of axes can also be used to improve efficiency. From version 1.2.0 the Rcpp package <https://cran.r-project.org/package=Rcpp> can be used to improve efficiency.