Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Utilities for processing input and output files associated with the Raven Hydrological Modelling Framework. Includes various plotting functions, model diagnostics, reading output files into extensible time series format, and support for writing Raven input files. The RavenR package is also archived at Chlumsky et al. (2020) <doi:10.5281/zenodo.4248183>. The Raven Hydrologic Modelling Framework method can be referenced with Craig et al. (2020) <doi:10.1016/j.envsoft.2020.104728>.
An implementation of the radviz projection in R. It enables the visualization of multidimensional data while maintaining the relation to the original dimensions. This package provides functions to create and plot radviz projections, and a number of summary plots that enable comparison and analysis. For reference see Hoffman *et al.* (1999) (<doi:10.1145/331770.331775>) for original implementation, see Di Caro *et al* (2012) (<doi:10.1007/978-3-642-13672-6_13>), for the original method for dimensional anchor arrangements, see Demsar *et al.* (2007) (<doi:10.1016/j.jbi.2007.03.010>) for the original Freeviz implementation.
This package provides a machine learning package for automatic text classification that makes it simple for novice users to get started with machine learning, while allowing experienced users to easily experiment with different settings and algorithm combinations. The package includes eight algorithms for ensemble classification (svm, slda, boosting, bagging, random forests, glmnet, decision trees, neural networks), comprehensive analytics, and thorough documentation.
For whole-genome analysis, idiograms are virtually the most intuitive and effective way to map and visualize the genome-wide information. RIdeogram was developed to visualize and map whole-genome data on idiograms with no restriction of species.
Fits non-linear regression models on dependant data with Generalised Least Square (GLS) based Random Forest (RF-GLS) detailed in Saha, Basu and Datta (2021) <doi:10.1080/01621459.2021.1950003>.
Plot regression surfaces and marginal effects in three dimensions. The plots are plotly objects and can be customized using functions and arguments from the plotly package.
Create interactive radar charts using the Chart.js JavaScript library and the htmlwidgets package. Chart.js <http://www.chartjs.org/> is a lightweight library that supports several types of simple chart using the HTML5 canvas element. This package provides an R interface specifically to the radar chart, sometimes called a spider chart, for visualising multivariate data.
Ray Shooting Depth functions are provided for bivariate analysis. This mainly includes functions for computing the bivariate depth as well as RS median. Drawing functions for depth bags are also provided.
This package provides the log-likelihoods with gradients from stan (Carpenter et al (2015), <doi:10.48550/arXiv.1509.07164>) needed for generalized log-likelihood estimation in nlmixr2 (Fidler et al (2019) <doi:10.1002/psp4.12445>). This is split of to reduce computational burden of recompiling rxode2 (Wang, Hallow and James (2016) <doi:10.1002/psp4.12052>) which runs the nlmixr2 models during estimation.
Create and manipulate hypergraph objects. This early version of rhype allows for the output of matrices associated with the hypergraphs themselves. It also uses these matrices to calculate hypergraph spectra and perform spectral comparison. Functionality coming soon includes calculation of hyperpaths and hypergraph centrality measures.
Modularizes source code. Keeps the global environment clean, explicifies interdependencies. Inspired by RequireJS'<http://requirejs.org/>.
Read Acoustic HAC format.
Some extensions to Rcmdr (R Commander), randomness test, variance test for one normal sample and predictions using active model, made by R-UCA project and used in teaching statistics at University of Cadiz (UCA).
This package provides a means to style plots through cascading style sheets. This separates the aesthetics from the data crunching in plots and charts.
Various statistical, graphics, and data-management functions used by the Rcmdr package in the R Commander GUI for R.
The Public Trading API <https://public.com/api/docs> allows clients to access their brokerage accounts, request market data, and place stock/etf/option orders.
This package implements various Riemannian metrics for symmetric positive definite matrices, including AIRM (Affine Invariant Riemannian Metric, <doi:10.1007/s11263-005-3222-z>), Log-Euclidean (<doi:10.1002/mrm.20965>), Euclidean, Log-Cholesky (<doi:10.1137/18M1221084>), and Bures-Wasserstein metrics (<doi:10.1016/j.exmath.2018.01.002>). Provides functions for computing logarithmic and exponential maps, vectorization, and statistical operations on the manifold of positive definite matrices.
This package provides functions for risk management and portfolio investment of securities with practical tools for data processing and plotting. Moreover, it contains functions which perform the COS Method, an option pricing method based on the Fourier-cosine series (Fang, F. (2008) <doi:10.1137/080718061>).
This package provides a toolkit for the analysis of high-dimensional repeated measurements, providing functions for outlier detection, differential expression analysis, gene-set tests, and binary random data generation.
This package provides a set of functions to simplify reading data from files. The main function, reader(), should read most common R datafile types without needing any parameters except the filename. Other functions provide simple ways of handling file paths and extensions, and automatically detecting file format and structure.
Run simple R scripts as command line applications, with automatic robust and convenient support for command line arguments. This package provides Rapp', an alternative R front-end similar to Rscript', that enables this.
Compute an exact CI for the population mean under a random effects model. The routines implement the algorithm described in Michael, Thronton, Xie, and Tian (2017) <https://haben-michael.github.io/research/Exact_Inference_Meta.pdf>.
This package provides a thin wrapper around the tiktoken-rs crate, allowing to encode text into Byte-Pair-Encoding (BPE) tokens and decode tokens back to text. This is useful to understand how Large Language Models (LLMs) perceive text.
This package contains all the code examples in the book "R for Dummies" (2nd edition) by Andrie de Vries and Joris Meys. You can view the table of contents as well as the sample code for each chapter.