Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Build powerful pivot tables (aka Pivot Grid, Pivot Chart, Cross-Tab) and dynamically slice & dice / drag n drop your data. rpivotTable is a wrapper of pivottable', a powerful open-source Pivot Table library implemented in JavaScript by Nicolas Kruchten. Aligned to pivottable v2.19.0.
Connect, execute, and parse results from the Daisi Microservice Platform <https://www.daisi.io/>. The rdaisi client includes a set of functionality that allows remote execution of microservices directly from R. Daisis allow R users to access a wide variety of Python functionality and interact with them natively.
Authors working with LaTeX articles use the built-in bibliography options and BibTeX files. While this might work with LaTeX', it does not function well with Web articles. As a way out, rebib offers tools to convert and combine bibliographies from both sources.
Handle climate data from the DWD ('Deutscher Wetterdienst', see <https://www.dwd.de/EN/climate_environment/cdc/cdc_node_en.html> for more information). Choose observational time series from meteorological stations with selectDWD()'. Find raster data from radar and interpolation according to <https://brry.github.io/rdwd/raster-data.html>. Download (multiple) data sets with progress bars and no re-downloads through dataDWD()'. Read both tabular observational data and binary gridded datasets with readDWD()'.
Fast alternatives to several relatively slow raster package functions. For large rasters, the functions run from 5 to approximately 100 times faster than the raster package functions they replace. The fasterize package, on which one function in this package depends, includes an implementation of the scan line algorithm attributed to Wylie et al. (1967) <doi:10.1145/1465611.1465619>.
Allows work with MyTarget Statistics API v2 <https://target.my.com/adv/api-marketing/doc/stat-v2> and MyTarget Statistics API v3 <https://target.my.com/adv/api-marketing/doc/stat-v2#statisticsv3> load data by ads, campaigns, agency clients and statistic from your ads account.
Linear model calculations are made for many random versions of data. Using residual randomization in a permutation procedure, sums of squares are calculated over many permutations to generate empirical probability distributions for evaluating model effects. Additionally, coefficients, statistics, fitted values, and residuals generated over many permutations can be used for various procedures including pairwise tests, prediction, classification, and model comparison. This package should provide most tools one could need for the analysis of high-dimensional data, especially in ecology and evolutionary biology, but certainly other fields, as well.
This package provides a collection of HTML', JavaScript', CSS and fonts assets that generate RapiDoc documentation from an OpenAPI Specification: <https://mrin9.github.io/RapiDoc/>.
The function RepaymentPlan() calculates repayment schedule for repayment/mortgage plans.
Connection to the Redis (or Valkey') key/value store using the C-language client library hiredis (included as a fallback) with MsgPack encoding provided via RcppMsgPack headers. It now also includes the pub/sub functions from the rredis package.
This package provides functions for radiation safety, also known as "radiation protection" and "radiological control". The science of radiation protection is called "health physics" and its engineering functions are called "radiological engineering". Functions in this package cover many of the computations needed by radiation safety professionals. Examples include: obtaining updated calibration and source check values for radiation monitors to account for radioactive decay in a reference source, simulating instrument readings to better understand measurement uncertainty, correcting instrument readings for geometry and ambient atmospheric conditions. Many of these functions are described in Johnson and Kirby (2011, ISBN-13: 978-1609134198). Utilities are also included for developing inputs and processing outputs with radiation transport codes, such as MCNP, a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron, or coupled neutron/photon/electron transport (Werner et. al. (2018) <doi:10.2172/1419730>).
Rapid7 collects cybersecurity data and makes it available via their Open Data <http://opendata.rapid7.com> portal which has an API. Tools are provided to assist in querying for available data sets and downloading any data set authorized to a free, registered account.
In order to facilitate R instruction for actuaries, we have organized several sets of publicly available data of interest to non-life actuaries. In addition, we suggest a set of packages, which most practicing actuaries will use routinely. Finally, there is an R markdown skeleton for basic reserve analysis.
This package provides an interface to vinecopulib', a C++ library for vine copula modeling. The rvinecopulib package implements the core features of the popular VineCopula package, in particular inference algorithms for both vine copula and bivariate copula models. Advantages over VineCopula are a sleeker and more modern API, improved performances, especially in high dimensions, nonparametric and multi-parameter families, and the ability to model discrete variables. The rvinecopulib package includes vinecopulib as header-only C++ library (currently version 0.7.2). Thus users do not need to install vinecopulib itself in order to use rvinecopulib'. Since their initial releases, vinecopulib is licensed under the MIT License, and rvinecopulib is licensed under the GNU GPL version 3.
Rcpp bindings for PLANC', a highly parallel and extensible NMF/NTF (Non-negative Matrix/Tensor Factorization) library. Wraps algorithms described in Kannan et. al (2018) <doi:10.1109/TKDE.2017.2767592> and Eswar et. al (2021) <doi:10.1145/3432185>. Implements algorithms described in Welch et al. (2019) <doi:10.1016/j.cell.2019.05.006>, Gao et al. (2021) <doi:10.1038/s41587-021-00867-x>, and Kriebel & Welch (2022) <doi:10.1038/s41467-022-28431-4>.
Load data from vk.com api about your communiti users and views, ads performance, post on user wall and etc. For more information see API Documentation <https://vk.com/dev/first_guide>.
Fits linear models with endogenous regressor using latent instrumental variable approaches. The methods included in the package are Lewbel's (1997) <doi:10.2307/2171884> higher moments approach as well as Lewbel's (2012) <doi:10.1080/07350015.2012.643126> heteroscedasticity approach, Park and Gupta's (2012) <doi:10.1287/mksc.1120.0718> joint estimation method that uses Gaussian copula and Kim and Frees's (2007) <doi:10.1007/s11336-007-9008-1> multilevel generalized method of moment approach that deals with endogeneity in a multilevel setting. These are statistical techniques to address the endogeneity problem where no external instrumental variables are needed. See the publication related to this package in the Journal of Statistical Software for more details: <doi:10.18637/jss.v107.i03>. Note that with version 2.0.0 sweeping changes were introduced which greatly improve functionality and usability but break backwards compatibility.
This package creates reports from Trello, a collaborative, project organization and list-making application. <https://trello.com/> Reports are created by comparing individual Trello board cards from two different points in time and documenting any changes made to the cards.
Flux (mass per unit time) and Load (mass) are computed from timeseries estimates of analyte concentration and discharge. Concentration timeseries are computed from regression between surrogate and user-provided analyte. Uncertainty in calculations is estimated using bootstrap resampling. Code for the processing of acoustic backscatter from horizontally profiling acoustic Doppler current profilers is provided. All methods detailed in Livsey et al (2020) <doi:10.1007/s12237-020-00734-z>, Livsey et al (2023) <doi:10.1029/2022WR033982>, and references therein.
Use the <https://api.nbp.pl/> API through R. Retrieve currency exchange rates and gold prices data published by the National Bank of Poland in form of convenient R objects.
This package provides a random-effects stochastic model that allows quick detection of clonal dominance events from clonal tracking data collected in gene therapy studies. Starting from the Ito-type equation describing the dynamics of cells duplication, death and differentiation at clonal level, we first considered its local linear approximation as the base model. The parameters of the base model, which are inferred using a maximum likelihood approach, are assumed to be shared across the clones. Although this assumption makes inference easier, in some cases it can be too restrictive and does not take into account possible scenarios of clonal dominance. Therefore we extended the base model by introducing random effects for the clones. In this extended formulation the dynamic parameters are estimated using a tailor-made expectation maximization algorithm. Further details on the methods can be found in L. Del Core et al., (2022) <doi:10.1101/2022.05.31.494100>.
Generates disease-specific drug-response profiles that are independent of time, concentration, and cell-line. Based on the cell lines used as surrogates, the returned profiles represent the unique transcriptional changes induced by a compound in a given disease.
This package provides utility functions that extend the capabilities of the reference-based multiple imputation package rbmi'. It supports clinical trial analysis workflows with functions for managing imputed datasets, applying analysis methods across imputations, and tidying results for reporting.
Blaze is an open-source, high-performance C++ math library for dense and sparse arithmetic. With its state-of-the-art Smart Expression Template implementation Blaze combines the elegance and ease of use of a domain-specific language with HPC-grade performance, making it one of the most intuitive and fastest C++ math libraries available. The RcppBlaze package includes the header files from the Blaze library with disabling some functionalities related to link to the thread and system libraries which make RcppBlaze be a header-only library. Therefore, users do not need to install Blaze'.