Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Selection of informative features like genes, transcripts, RNA seq, etc. using Bootstrap Maximum Relevance and Minimum Redundancy technique from a given high dimensional genomic dataset. Informative gene selection involves identification of relevant genes and removal of redundant genes as much as possible from a large gene space. Main applications in high-dimensional expression data analysis (e.g. microarray data, NGS expression data and other genomics and proteomics applications).
Bisulfite-treated RNA non-conversion in a set of samples is analysed as follows : each sample's non-conversion distribution is identified to a Poisson distribution. P-values adjusted for multiple testing are calculated in each sample. Combined non-conversion P-values and standard errors are calculated on the intersection of the set of samples. For further details, see C Legrand, F Tuorto, M Hartmann, R Liebers, D Jakob, M Helm and F Lyko (2017) <doi:10.1101/gr.210666.116>.
Runs hierarchical linear Bayesian models. Samples from the posterior distributions of model parameters in JAGS (Just Another Gibbs Sampler; Plummer, 2017, <http://mcmc-jags.sourceforge.net>). Computes Bayes factors for group parameters of interest with the Savage-Dickey density ratio (Wetzels, Raaijmakers, Jakab, Wagenmakers, 2009, <doi:10.3758/PBR.16.4.752>).
Usually, it is difficult to plot choropleth maps for Bangladesh in R'. The bangladesh package provides ready-to-use shapefiles for different administrative regions of Bangladesh (e.g., Division, District, Upazila, and Union). This package helps users to draw thematic maps of administrative regions of Bangladesh easily as it comes with the sf objects for the boundaries. It also provides functions allowing users to efficiently get specific area maps and center coordinates for regions. Users can also search for a specific area and calculate the centroids of those areas.
Estimates cumulative history for time-series for continuously viewed bistable perceptual rivalry displays. Computes cumulative history via a homogeneous first order differential process. I.e., it assumes exponential growth/decay of the history as a function time and perceptually dominant state, Pastukhov & Braun (2011) <doi:10.1167/11.10.12>. Supports Gamma, log normal, and normal distribution families. Provides a method to compute history directly and example of using the computation on a custom Stan code.
This package provides statistical tools for Bayesian estimation of mixture distributions, mainly a mixture of Gamma, Normal, and t-distributions. The package is implemented based on the Bayesian literature for the finite mixture of distributions, including Mohammadi and et al. (2013) <doi:10.1007/s00180-012-0323-3> and Mohammadi and Salehi-Rad (2012) <doi:10.1080/03610918.2011.588358>.
It is very common nowadays for a study to collect multiple features and appropriately integrating multiple longitudinal features simultaneously for defining individual clusters becomes increasingly crucial to understanding population heterogeneity and predicting future outcomes. BCClong implements a Bayesian consensus clustering (BCC) model for multiple longitudinal features via a generalized linear mixed model. Compared to existing packages, several key features make the BCClong package appealing: (a) it allows simultaneous clustering of mixed-type (e.g., continuous, discrete and categorical) longitudinal features, (b) it allows each longitudinal feature to be collected from different sources with measurements taken at distinct sets of time points (known as irregularly sampled longitudinal data), (c) it relaxes the assumption that all features have the same clustering structure by estimating the feature-specific (local) clusterings and consensus (global) clustering.
Render SVG as interactive figures to display contextual information, with selectable and clickable user interface elements. These figures can be seamlessly integrated into rmarkdown and Quarto documents, as well as shiny applications, allowing manipulation of elements and reporting actions performed on them. Additional features include pan, zoom in/out functionality, and the ability to export the figures in SVG or PNG formats.
The function estimates the hazard function non parametrically from a survival object (possibly adjusted for covariates). The smoothed estimate is based on B-splines from the perspective of generalized linear mixed models. Left truncated and right censoring data are allowed. The package is based on the work in Rebora P (2014) <doi:10.32614/RJ-2014-028>.
This package provides a suite of Bayesian MI-LASSO for variable selection methods for multiply-imputed datasets. The package includes four Bayesian MI-LASSO models using shrinkage (Multi-Laplace, Horseshoe, ARD) and Spike-and-Slab (Spike-and-Laplace) priors, along with tools for model fitting via MCMC, four-step projection predictive variable selection, and hyperparameter calibration. Methods are suitable for both continuous and binary covariates under missing-at-random or missing-completely-at-random assumptions. See Zou, J., Wang, S. and Chen, Q. (2025), Bayesian MI-LASSO for Variable Selection on Multiply-Imputed Data. ArXiv, 2211.00114. <doi:10.48550/arXiv.2211.00114> for more details. We also provide the frequentist`s MI-LASSO function.
This package provides a computational tool to describe patterns in black and white images from natural structures. bwimage implemented functions for exceptionally broad subject. For instance, bwimage provide examples that range from calculation of canopy openness, description of patterns in vertical vegetation structure, to patterns in bird nest structure.
Identifies and visualizes document overlap in any number of bibliographic datasets. This package implements the identification of overlapping documents through the exact match of a unique identifier (e.g. Digital Object Identifier - DOI) and, for records where the identifier is absent, through a score calculated from a set of fields commonly found in bibliographic datasets (Title, Source, Authors and Publication Year). Additionally, it provides functions to visualize the results of the document matching through a Venn diagram and/or UpSet plot, as well as a summary of the matching procedure.
Asymptotic simultaneous confidence intervals for comparison of many treatments with one control, for the difference of binomial proportions, allows for Dunnett-like-adjustment, Bonferroni or unadjusted intervals. Simulation of power of the above interval methods, approximate calculation of any-pair-power, and sample size iteration based on approximate any-pair power. Exact conditional maximum test for many-to-one comparisons to a control.
Implementations of Bayesian parametric, nonparametric and semiparametric procedures for univariate and multivariate time series. The package is based on the methods presented in C. Kirch et al (2018) <doi:10.1214/18-BA1126>, A. Meier (2018) <https://opendata.uni-halle.de//handle/1981185920/13470> and Y. Tang et al (2023) <doi:10.48550/arXiv.2303.11561>. It was supported by DFG grants KI 1443/3-1 and KI 1443/3-2.
This package provides tools for Dating Business Cycles using Harding-Pagan (Quarterly Bry-Boschan) method and various plotting features.
Simulate multivariate data with arbitrary marginal distributions. bigsimr is a package for simulating high-dimensional multivariate data with a target correlation and arbitrary marginal distributions via Gaussian copula. It utilizes the Julia package Bigsimr.jl for its core routines.
Graphical User Interface (via the R-Commander) and utility functions (often based on the vegan package) for statistical analysis of biodiversity and ecological communities, including species accumulation curves, diversity indices, Renyi profiles, GLMs for analysis of species abundance and presence-absence, distance matrices, Mantel tests, and cluster, constrained and unconstrained ordination analysis. A book on biodiversity and community ecology analysis is available for free download from the website. In 2012, methods for (ensemble) suitability modelling and mapping were expanded in the package.
Smoothed lexis diagrams with Bayesian method specifically tailored to cancer incidence data. Providing to calculating slope and constructing credible interval. LC Chien et al. (2015) <doi:10.1080/01621459.2015.1042106>. LH Chien et al. (2017) <doi:10.1002/cam4.1102>.
This is a sub national population projection model for calculating population development. The model uses a cohort component method. Further reading: Stanley K. Smith: A Practitioner's Guide to State and Local Population Projections. 2013. <doi:10.1007/978-94-007-7551-0>.
Package providing a number of functions for working with Two- and Four-parameter Beta and closely related distributions (i.e., the Gamma- Binomial-, and Beta-Binomial distributions). Includes, among other things: - d/p/q/r functions for Four-Parameter Beta distributions and Generalized "Binomial" (continuous) distributions, and d/p/r- functions for Beta- Binomial distributions. - d/p/q/r functions for Two- and Four-Parameter Beta distributions parameterized in terms of their means and variances rather than their shape-parameters. - Moment generating functions for Binomial distributions, Beta-Binomial distributions, and observed value distributions. - Functions for estimating classification accuracy and consistency, making use of the Classical Test-Theory based Livingston and Lewis (L&L) and Hanson and Brennan approaches. A shiny app is available, providing a GUI for the L&L approach when used for binary classifications. For url to the app, see documentation for the LL.CA() function. Livingston and Lewis (1995) <doi:10.1111/j.1745-3984.1995.tb00462.x>. Lord (1965) <doi:10.1007/BF02289490>. Hanson (1991) <https://files.eric.ed.gov/fulltext/ED344945.pdf>.
Analysis workflow for finding geographic boundaries of ecological or landscape traits and comparing the placement of geographic boundaries of two traits. If data are trait values, trait data are transformed to boundary intensities based on approximate first derivatives across latitude and longitude. The package includes functions to create custom null models based on the input data. The boundary statistics are described in: Fortin, Drapeau, and Jacquez (1996) <doi:10.2307/3545584>.
This package provides functions to create side-by-side boxplots for a continuous variable grouped by a two-level categorical variable, check normality assumptions using the Shapiro-Wilk test (Shapiro and Wilk (1965) <doi:10.2307/2333709>), and perform appropriate statistical tests such as the independent two-sample t-test (Student (1908) <doi:10.1093/biomet/6.1.1>) or the MannĂ¢ Whitney U test ( MannĂ¢ Whitney (1947) <doi:10.1214/aoms/1177730491>). Returns a publication-ready plot and test statistics including test statistic, degrees of freedom, and p-value.
Compose and send out responsive HTML email messages that render perfectly across a range of email clients and device sizes. Helper functions let the user insert embedded images, web link buttons, and ggplot2 plot objects into the message body. Messages can be sent through an SMTP server, through the Posit Connect service, or through the Mailgun API service <https://www.mailgun.com/>.
This package provides tools for constructing board/grid based games, as well as readily available game(s) for your entertainment.