Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Rank-hazard plots Karvanen and Harrell (2009) <DOI:10.1002/sim.3591> visualize the relative importance of covariates in a proportional hazards model. The key idea is to rank the covariate values and plot the relative hazard as a function of ranks scaled to interval [0,1]. The relative hazard is plotted in respect to the reference hazard, which can bee.g. the hazard related to the median of the covariate.
Execute FOCAL (<https://en.wikipedia.org/wiki/FOCAL_(programming_language)>) source code directly in R'. This is achieved by translating FOCAL code into equivalent R commands and controlling the sequence of execution.
Utilities for accessing RePEc (Research Papers in Economics) through a RESTful API. You can request a code and get detailed information at the following page: <https://ideas.repec.org/api.html>.
An interactive data visualization and exploration toolkit that implements Breiman and Cutler's original random forest Java based visualization tools in R, for supervised and unsupervised classification and regression within the algorithm random forest.
This package provides a programmatic interface to the API provided by the iNaturalist website <https://www.inaturalist.org/> to download species occurrence data submitted by citizen scientists.
Reproducible, programmatic retrieval of datasets from the Roper Center data archive. The Roper Center for Public Opinion Research <https://ropercenter.cornell.edu> maintains the largest archive of public opinion data in existence, but researchers using these datasets are caught in a bind. The Center's terms and conditions bar redistribution of downloaded datasets, but to ensure that one's work can be reproduced, assessed, and built upon by others, one must provide access to the raw data one employed. The `ropercenter` package cuts this knot by providing registered users with programmatic, reproducible access to Roper Center datasets from within R.
Automatically creates separate regression models for different spatial regions. The prediction surface is smoothed using a regional border smoothing method. If regional models are continuous, the resulting prediction surface is continuous across the spatial dimensions, even at region borders. Methodology is described in Wagstaff and Bean (2023) <doi:10.32614/RJ-2023-004>.
Estimate significance of importance metrics for a Random Forest model by permuting the response variable. Produces null distribution of importance metrics for each predictor variable and p-value of observed. Provides summary and visualization functions for randomForest results.
Flexible statistical modelling using a modular framework for regression, in which groups of transformations are composed together and act on probability distributions.
Vector Graphics devices for Microsoft PowerPoint and Microsoft Excel'. Functions extending package officer are provided to embed DrawingML graphics into Microsoft PowerPoint presentations and Microsoft Excel workbooks.
The Regional Vulnerability Index (RVI), a statistical measure of brain structural abnormality, quantifies an individual's similarity to the expected pattern (effect size) of deficits in schizophrenia (Kochunov P, Fan F, Ryan MC, et al. (2020) <doi:10.1002/hbm.25045>).
This package provides a wrapper for Jagger, a morphological analyzer proposed in Yoshinaga (2023) <arXiv:2305.19045>. Jagger uses patterns derived from morphological dictionaries and training data sets and applies them from the beginning of the input. This simultaneous and deterministic process enables it to effectively perform tokenization, POS tagging, and lemmatization.
This package provides a toolbox created by members of the International Union for Conservation of Nature (IUCN) Red List of Ecosystems Committee for Scientific Standards. Primarily, it is a set of tools suitable for calculating the metrics required for making assessments of species and ecosystems against the IUCN Red List of Threatened Species and the IUCN Red List of Ecosystems categories and criteria. See the IUCN website for detailed guidelines, the criteria, publications and other information.
As an advanced approach to computerized adaptive testing (CAT), shadow testing (van der Linden(2005) <doi:10.1007/0-387-29054-0>) dynamically assembles entire shadow tests as a part of selecting items throughout the testing process. Selecting items from shadow tests guarantees the compliance of all content constraints defined by the blueprint. RSCAT is an R package for the shadow-test approach to CAT. The objective of RSCAT is twofold: 1) Enhancing the effectiveness of shadow-test CAT simulation; 2) Contributing to the academic and scientific community for CAT research. RSCAT is currently designed for dichotomous items based on the three-parameter logistic (3PL) model.
This package provides functionality to group lines that form naturally continuous lines in a spatial network. The algorithm implemented is based on the Continuity in Street Networks (COINS) method from Tripathy et al. (2021) <doi:10.1177/2399808320967680>, which identifies continuous "strokes" in the network as the line strings that maximize the angles between consecutive segments.
Collection of functions designed to compute risk-based portfolios as described in Ardia et al. (2017) <doi:10.1007/s10479-017-2474-7> and Ardia et al. (2017) <doi:10.21105/joss.00171>.
Native R interface to TMB (Template Model Builder) so models can be written entirely in R rather than C++'. Automatic differentiation, to any order, is available for a rich subset of R features, including linear algebra for dense and sparse matrices, complex arithmetic, Fast Fourier Transform, probability distributions and special functions. RTMB provides easy access to model fitting and validation following the principles of Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016) <DOI:10.18637/jss.v070.i05> and Thygesen, U.H., Albertsen, C.M., Berg, C.W. et al. (2017) <DOI:10.1007/s10651-017-0372-4>.
Matrix reconstruction, also known as matrix completion, is the task of inferring missing entries of a partially observed matrix. This package provides a method called OptSpace, which was proposed by Keshavan, R.H., Oh, S., and Montanari, A. (2009) <doi:10.1109/ISIT.2009.5205567> for a case under low-rank assumption.
Calculate rarefaction-based alpha- and beta-diversity. Offer parametric extrapolation to estimate the total expected species in a single community and the total expected shared species between two communities. Visualize the curve-fitting for these estimators.
This package provides R and JavaScript functions to allow WebGL'-based 3D plotting using the three.js JavaScript library. Interactivity through roll-over highlighting and toggle buttons is also supported.
This package provides a tool for mass deployment of shiny apps to RStudio Connect or Shiny Server'. Multiple user accounts and servers can be configured for deployment.
Takes Poisson or Binomial discrete spatial data and runs a Gibbs sampler for a variety of Spatiotemporal Conditional Autoregressive (CAR) models. Includes measures to prevent estimate over-smoothing through a restriction of model informativeness for select models. Also provides tools to load output and get median estimates. Implements methods from Besag, York, and Mollié (1991) "Bayesian image restoration, with two applications in spatial statistics" <doi:10.1007/BF00116466>, Gelfand and Vounatsou (2003) "Proper multivariate conditional autoregressive models for spatial data analysis" <doi:10.1093/biostatistics/4.1.11>, Quick et al. (2017) "Multivariate spatiotemporal modeling of age-specific stroke mortality" <doi:10.1214/17-AOAS1068>, and Quick et al. (2021) "Evaluating the informativeness of the Besag-York-Mollié CAR model" <doi:10.1016/j.sste.2021.100420>.
Carry out principal component analysis (PCA) of very large pedigrees such as found in breeding populations! This package exploits sparse matrices and randomised linear algebra to deliver a gazillion-times speed-up compared to naive singular value decoposition (SVD) (and eigen decomposition).
It is devoted to the IVIVC linear level A with numerical deconvolution method. The latter is working for inequal and incompatible timepoints between impulse and response curves. A numerical convolution method is also available. Application domains include pharamaceutical industry QA/QC and R&D together with academic research.