Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides four boolean matrix factorization (BMF) methods. BMF has many applications like data mining and categorical data analysis. BMF is also known as boolean matrix decomposition (BMD) and was found to be an NP-hard (non-deterministic polynomial-time) problem. Currently implemented methods are Asso Miettinen, Pauli and others (2008) <doi:10.1109/TKDE.2008.53>, GreConD R. Belohlavek, V. Vychodil (2010) <doi:10.1016/j.jcss.2009.05.002> , GreConDPlus R. Belohlavek, V. Vychodil (2010) <doi:10.1016/j.jcss.2009.05.002> , topFiberM A. Desouki, M. Roeder, A. Ngonga (2019) <arXiv:1903.10326>.
Apply sensitivity analysis for offline policy evaluation, as implemented in Jung et al. (2017) <arXiv:1702.04690> based on Rosenbaum and Rubin (1983) <http://www.jstor.org/stable/2345524>.
Allow function for using TGStat Stat API and TGStat Search API', for more details see <https://api.tgstat.ru/docs/ru/start/intro.html>. TGStat provide telegram channel analytics data.
Implementation of the RPC-JSON API for Bitcoin and utility functions for address creation and content analysis of the blockchain.
This package provides a toolkit for making antigenic maps from immunological assay data, in order to quantify and visualize antigenic differences between different pathogen strains as described in Smith et al. (2004) <doi:10.1126/science.1097211> and used in the World Health Organization influenza vaccine strain selection process. Additional functions allow for the diagnostic evaluation of antigenic maps and an interactive viewer is provided to explore antigenic relationships amongst several strains and incorporate the visualization of associated genetic information.
Fits an Ising model to a binary dataset using L1 regularized logistic regression and extended BIC. Also includes a fast lasso logistic regression function for high-dimensional problems. Uses the libLBFGS optimization library by Naoaki Okazaki.
Polynomially bounded algorithms to aggregate complete rankings under Kemeny's axiomatic framework. RankAggSIgFUR (pronounced as rank-agg-cipher) contains two heuristics algorithms: FUR and SIgFUR. For details, please see Badal and Das (2018) <doi:10.1016/j.cor.2018.06.007>.
Earth Engine <https://earthengine.google.com/> client library for R. All of the Earth Engine API classes, modules, and functions are made available. Additional functions implemented include importing (exporting) of Earth Engine spatial objects, extraction of time series, interactive map display, assets management interface, and metadata display. See <https://r-spatial.github.io/rgee/> for further details.
Queries data from RDAP servers.
Allows developers to work with many R folders inside a package. It offers functionalities to transfer R scripts (saved outside the R folder) into the R folder while making additional checks.
This package provides classes and functions for modelling health care interventions using decision trees and semi-Markov models. Mechanisms are provided for associating an uncertainty distribution with each source variable and for ensuring transparency of the mathematical relationships between variables. The package terminology follows Briggs "Decision Modelling for Health Economic Evaluation" (2006, ISBN:978-0-19-852662-9).
Data objects in R can be rendered as HTML tables using the JavaScript library ag-grid (typically via R Markdown or Shiny'). The ag-grid library has been included in this R package. The package name RagGrid is an abbreviation of R agGrid'.
Downloads spatial data from spatiotemporal asset catalogs ('STAC'), computes standard spectral indices from the Awesome Spectral Indices project (Montero et al. (2023) <doi:10.1038/s41597-023-02096-0>) against raster data, and glues the outputs together into predictor bricks. Methods focus on interoperability with the broader spatial ecosystem; function arguments and outputs use classes from sf and terra', and data downloading functions support complex CQL2 queries using rstac'.
Analyzes and predicts from matrix population models (Caswell 2006) <doi:10.1002/9781118445112.stat07481>.
This package provides fast implementations of Random Forests, Gradient Boosting, and Linear Random Forests, with an emphasis on inference and interpretability. Additionally contains methods for variable importance, out-of-bag prediction, regression monotonicity, and several methods for missing data imputation.
Amplification efficiency estimation, statistical analysis, and graphical representation of quantitative real-time PCR (qPCR) data using one or more specified reference genes is handled by rtpcr package. By accounting for amplification efficiency values, rtpcr was developed using a general calculation method described by Ganger et al. (2017) <doi:10.1186/s12859-017-1949-5> and Taylor et al. (2019) <doi:10.1016/j.tibtech.2018.12.002>, covering both the Livak and Pfaffl methods. Based on the experimental conditions, the functions of the rtpcr package use t-test (for experiments with a two-level factor), analysis of variance (ANOVA), analysis of covariance (ANCOVA) or analysis of repeated measure data to analyse the relative expression (Delta Delta Ct method or Delta Ct method). The functions further provide standard errors and confidence intervals for means, apply statistical mean comparisons and present significance.
Use trend filtering, a type of regularized nonparametric regression, to estimate the instantaneous reproduction number, also called Rt. This value roughly says how many new infections will result from each new infection today. Values larger than 1 indicate that an epidemic is growing while those less than 1 indicate decline. For more details about this methodology, see Liu, Cai, Gustafson, and McDonald (2024) <doi:10.1371/journal.pcbi.1012324>.
Interoperability between Rcpp and the C++11 array and tuple types. Linking to this package allows fixed-length std::array objects to be converted to and from equivalent R vectors, and std::tuple objects converted to lists, via the as() and wrap() functions. There is also experimental support for std::span from C++20'.
An R package for the OpenSecrets.org web services API.
Point and interval estimation of linear parameters with data obtained from complex surveys (including stratified and clustered samples) when randomization techniques are used. The randomized response technique was developed to obtain estimates that are more valid when studying sensitive topics. Estimators and variances for 14 randomized response methods for qualitative variables and 7 randomized response methods for quantitative variables are also implemented. In addition, some data sets from surveys with these randomization methods are included in the package.
This reduced piecewise exponential survival software implements the likelihood ratio test and backward elimination procedure in Han, Schell, and Kim (2012 <doi:10.1080/19466315.2012.698945>, 2014 <doi:10.1002/sim.5915>), and Han et al. (2016 <doi:10.1111/biom.12590>). Inputs to the program can be either times when events/censoring occur or the vectors of total time on test and the number of events. Outputs of the programs are times and the corresponding p-values in the backward elimination. Details about the model and implementation are given in Han et al. 2014. This program can run in R version 3.2.2 and above.
Implementation of the affine-invariant method of Goodman & Weare (2010) <DOI:10.2140/camcos.2010.5.65>, a method of producing Monte-Carlo samples from a target distribution.
This package provides a collection of functions to simulate luminescence production in dosimetric materials using Monte Carlo methods. Implemented are models for delocalised transitions (e.g., Chen and McKeever (1997) <doi:10.1142/2781>), localised transitions (e.g., Pagonis et al. (2019) <doi:10.1016/j.jlumin.2018.11.024>) and tunnelling transitions (Jain et al. (2012) <doi:10.1088/0953-8984/24/38/385402> and Pagonis et al. (2019) <doi:10.1016/j.jlumin.2018.11.024>). Supported stimulation methods are thermal luminescence (TL), continuous-wave optically stimulated luminescence (CW-OSL), linearly-modulated optically stimulated luminescence (LM-OSL), linearly-modulated infrared stimulated luminescence (LM-IRSL), and isothermal luminescence (ITL or ISO-TL).
This package contains function rkt which computes the Mann-Kendall test (MK) and the Seasonal and the Regional Kendall Tests for trend (SKT and RKT) and Theil-Sen's slope estimator.