Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
R package for creating, manipulating and reading RO-Crates. Latest supported version of the specification: <https://w3id.org/ro/crate/1.2/>.
This package provides a framework for estimating ensembles of meta-analytic, meta-regression, and multilevel models (assuming either presence or absence of the effect, heterogeneity, publication bias, and moderators). The RoBMA framework uses Bayesian model-averaging to combine the competing meta-analytic models into a model ensemble, weights the posterior parameter distributions based on posterior model probabilities and uses Bayes factors to test for the presence or absence of the individual components (e.g., effect vs. no effect; Bartoš et al., 2022, <doi:10.1002/jrsm.1594>; Maier, Bartoš & Wagenmakers, 2022, <doi:10.1037/met0000405>; Bartoš et al., 2025, <doi:10.1037/met0000737>). Users can define a wide range of prior distributions for the effect size, heterogeneity, publication bias (including selection models and PET-PEESE), and moderator components. The package provides convenient functions for summary, visualizations, and fit diagnostics.
This package provides a collection of tools for measuring the similarity of text messages and tracing the flow of messages over time and across media.
Implementation of some functions to create quizzes in the GIFT format. This format is used by several Virtual Learning Environments such as Moodle.
This package provides functions and examples for testing hypothesis about the population mean and variance on samples drawn by r-size biased sampling schemes.
This package provides a set of tools to reconstruct ordered ontogenic trajectories from single cell RNAseq data.
Empirical best linear unbiased prediction (EBLUP) and robust prediction of the area-level means under the basic unit-level model. The model can be fitted by maximum likelihood or a (robust) M-estimator. Mean square prediction error is computed by a parametric bootstrap.
This package provides functions to facilitate inference on the relative importance of predictors in a linear or generalized linear model, and a couple of useful Tcl/Tk widgets.
Easy installation, loading, and control of packages for redistricting data downloading, spatial data processing, simulation, analysis, and visualization. This package makes it easy to install and load multiple redistverse packages at once. The redistverse is developed and maintained by the Algorithm-Assisted Redistricting Methodology (ALARM) Project. For more details see <https://alarm-redist.org>.
This package provides utility functions that extend the capabilities of the reference-based multiple imputation package rbmi'. It supports clinical trial analysis workflows with functions for managing imputed datasets, applying analysis methods across imputations, and tidying results for reporting.
The function RepaymentPlan() calculates repayment schedule for repayment/mortgage plans.
As an advanced approach to computerized adaptive testing (CAT), shadow testing (van der Linden(2005) <doi:10.1007/0-387-29054-0>) dynamically assembles entire shadow tests as a part of selecting items throughout the testing process. Selecting items from shadow tests guarantees the compliance of all content constraints defined by the blueprint. RSCAT is an R package for the shadow-test approach to CAT. The objective of RSCAT is twofold: 1) Enhancing the effectiveness of shadow-test CAT simulation; 2) Contributing to the academic and scientific community for CAT research. RSCAT is currently designed for dichotomous items based on the three-parameter logistic (3PL) model.
Radiomics image analysis toolbox for 2D and 3D radiological images. RIA supports DICOM, NIfTI, nrrd and npy (numpy array) file formats. RIA calculates first-order, gray level co-occurrence matrix, gray level run length matrix and geometry-based statistics. Almost all calculations are done using vectorized formulas to optimize run speeds. Calculation of several thousands of parameters only takes minutes on a single core of a conventional PC. Detailed methodology has been published: Kolossvary et al. Circ: Cardiovascular Imaging. 2017;10(12):e006843 <doi: 10.1161/CIRCIMAGING.117.006843>.
Handle climate data from the DWD ('Deutscher Wetterdienst', see <https://www.dwd.de/EN/climate_environment/cdc/cdc_node_en.html> for more information). Choose observational time series from meteorological stations with selectDWD()'. Find raster data from radar and interpolation according to <https://brry.github.io/rdwd/raster-data.html>. Download (multiple) data sets with progress bars and no re-downloads through dataDWD()'. Read both tabular observational data and binary gridded datasets with readDWD()'.
SyncroSim is a generalized framework for managing scenario-based datasets (<https://syncrosim.com/>). rsyncrosim provides an interface to SyncroSim'. Simulation models can be added to SyncroSim in order to transform these datasets, taking advantage of general features such as defining scenarios of model inputs, running Monte Carlo simulations, and summarizing model outputs. rsyncrosim requires SyncroSim 2.3.5 or higher (API documentation: <https://docs.syncrosim.com/>).
Enhances the R Optimization Infrastructure ('ROI') package by registering the ipop solver from package kernlab'.
Resampling Stats (http://www.resample.com) is an add-in for running randomization tests in Excel worksheets. The workflow is (1) to define a statistic of interest that can be calculated from a data table, (2) to randomize rows ad/or columns of a data table to simulate a null hypothesis and (3) and to score the value of the statistic from many randomizations. The relative frequency distribution of the statistic in the simulations is then used to infer the probability of the observed value be generated by the null process (probability of Type I error). This package intends to translate this logic for R for teaching purposes. Keeping the original workflow is favored over performance.
Generic functions to analyze the distribution of two continuous variables: conf2d to calculate a smooth empirical confidence region, and freq2d to calculate a frequency distribution.
Implementation of the Johnson Quantile-Parameterised Distribution in R. The Johnson Quantile-Parameterised Distribution (J-QPD) is a flexible distribution system that is parameterised by a symmetric percentile triplet of quantile values (typically the 10th-50th-90th) along with known support bounds for the distribution. The J-QPD system was developed by Hadlock and Bickel (2017) <doi:10.1287/deca.2016.0343>. This package implements the density, quantile, CDF and random number generator functions.
Implementation of a Recurrent Neural Network architectures in native R, including Long Short-Term Memory (Hochreiter and Schmidhuber, <doi:10.1162/neco.1997.9.8.1735>), Gated Recurrent Unit (Chung et al.) and vanilla RNN.
It enables the identification of sequentialexperimentation orders for factorial designs that jointly reduce bias and the number of level changes. The method used is that presented by Conto et al. (2025), known as the Assignment-Expansion method, which consists of adapting the linear programming assignment problem to generate balanced experimentation orders. The properties identified are then generalized to designs with a larger number of factors and levels using the expansion method proposed by Correa et al. (2009) and later generalized by Bhowmik et al. (2017). For more details see Conto et al. (2025) <doi:10.1016/j.cie.2024.110844>, Correa et al. (2009) <doi:10.1080/02664760802499337> and Bhowmik et al. (2017) <doi:10.1080/03610926.2016.1152490>.
This package provides XML parsing capability through the Rapidxml C++ header-only library.
This package provides a straightforward model to estimate soil migration rates across various soil contexts. Based on the compartmental, vertically-resolved, physically-based mass balance model of Soto and Navas (2004) <doi:10.1016/j.jaridenv.2004.02.003> and Soto and Navas (2008) <doi:10.1016/j.radmeas.2008.02.024>. RadEro provides a user-friendly interface in R, utilizing input data such as 137Cs inventories and parameters directly derived from soil samples (e.g., fine fraction density, effective volume) to accurately capture the 137Cs distribution within the soil profile. The model simulates annual 137Cs fallout, radioactive decay, and vertical diffusion, with the diffusion coefficient calculated from 137Cs reference inventory profiles. Additionally, it allows users to input custom parameters as calibration coefficients. The RadEro user manual and protocol, including detailed instructions on how to format input data and configuration files, can be found at the following link: <https://github.com/eead-csic-eesa/RadEro>.
Connector to the REST API of a Rock R server, to perform operations on a remote R server session, or administration tasks. See Rock documentation at <https://rockdoc.obiba.org/>.