Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The algorithm provided in this package generates perfect sample for unimodal or multimodal posteriors. Read Once Coupling From The Past, with Metropolis-Multishift is used to generate a perfect sample for a given posterior density based on the two extreme starting paths, minimum and maximum of the most interest range of the posterior. It uses the monotone random operation of multishift coupler which allows to sandwich all of the state space in one point. It means both Markov Chains starting from the maximum and minimum will be coalesced. The generated sample is independent from the starting points. It is useful for mixture distributions too. The output of this function is a real value as an exact draw from the posterior distribution.
Additional matrix functionality for R including: (1) wrappers for the base matrix function that allow matrices to be created from character strings and lists (the former is especially useful for creating block matrices), (2) better printing of large matrices via the generic "pretty" print function, and (3) a number of convenience functions for users more familiar with other scientific languages like Julia', Matlab'/'Octave', or Python'+'NumPy'.
Multiscale Curvature Classification of ground returns in 3-D LiDAR point clouds, designed for forested environments. RMCC is a porting to R of the MCC-lidar method by Evans and Hudak (2007) <doi:10.1109/TGRS.2006.890412>.
Connect, execute, and parse results from the Daisi Microservice Platform <https://www.daisi.io/>. The rdaisi client includes a set of functionality that allows remote execution of microservices directly from R. Daisis allow R users to access a wide variety of Python functionality and interact with them natively.
Implementation of the Integrated Simple Weighted Sum Product Method (WISP), a multiple criteria sorting method create by Dragisa Stanujkic (2021) <doi:10.1109/TEM.2021.3075783>.
This package provides a collection of functions for basic database and document management operations such as add, get, list access or delete. Every cdbFunction() gets and returns a list() containing the connection setup. Such a list can be generated by cdbIni().
This package provides a GUI for the orloca package is provided as a Rcmdr plug-in. The package deals with continuos planar location problems.
This package implements the estimation techniques described in Rousseeuw & Verboven (2002) <doi:10.1016/S0167-9473(02)00078-6> for the location and scale of very small samples.
Calculate endogenous network effects in event sequences and fit relational event models (REM): Using network event sequences (where each tie between a sender and a target in a network is time-stamped), REMs can measure how networks form and evolve over time. Endogenous patterns such as popularity effects, inertia, similarities, cycles or triads can be calculated and analyzed over time.
We provide functions to perform taxometric analyses. This package contains 46 functions, but only 5 should be called directly by users. CheckData() should be run prior to any taxometric analysis to ensure that the data are appropriate for taxometric analysis. RunTaxometrics() performs taxometric analyses for a sample of data. RunCCFIProfile() performs a series of taxometric analyses to generate a CCFI profile. CreateData() generates a sample of categorical or dimensional data. ClassifyCases() assigns cases to groups using the base-rate classification method.
As of RStudio v1.3, the preferences in the Global Options dialog (and a number of other preferences that arenĂ¢ t) are now saved in simple, plain-text JSON files. This package provides an interface for working with these RStudio JSON preference files to easily make modifications without using the point-and-click option menus. This is particularly helpful when working on teams to ensure a unified experience across machines and utilizing settings for best practices.
High level and easy HTTP client for R'. Provides functions for building HTTP queries, including query parameters, body requests, headers, authentication, and more.
The concept of reliable and clinically significant change (Jacobson & Truax, 1991) helps you answer the following questions for a sample with two measurements at different points in time (pre & post): Which proportion of my sample has a (considering the reliability of the instrument) probably not-just-by-chance difference in pre- vs. post-scores? Which proportion of my sample does not only change in a statistically significant way (see question one), but also in a clinically significant way (e.g. change from a test score regarded "dysfunctional" to a score regarded "functional")? This package allows you to very easily create a scatterplot of your sample in which the x-axis maps to the pre-scores, the y-axis maps to the post-scores and several graphical elements (lines, colors) allow you to gain a quick overview about reliable changes in these scores. An example of this kind of plot is Figure 2 of Jacobson & Truax (1991). Referenced article: Jacobson, N. S., & Truax, P. (1991) <doi:10.1037/0022-006X.59.1.12>.
Enhances the R Optimization Infrastructure ('ROI') package by registering the ipop solver from package kernlab'.
Easily compute an aggregate ranking (also called a median ranking or a consensus ranking) according to the axiomatic approach presented by Cook et al. (2007). This approach minimises the number of violations between all candidate consensus rankings and all input (partial) rankings, and draws on a branch and bound algorithm and a heuristic algorithm to drastically improve speed. The package also provides an option to bootstrap a consensus ranking based on resampling input rankings (with replacement). Input rankings can be either incomplete (partial) or complete. Reference: Cook, W.D., Golany, B., Penn, M. and Raviv, T. (2007) <doi:10.1016/j.cor.2005.05.030>.
This package provides a high-performance interface for calculating string similarities and distances, leveraging the efficient library RapidFuzz <https://github.com/rapidfuzz/rapidfuzz-cpp>. This package integrates the C++ implementation, allowing R users to access cutting-edge algorithms for fuzzy matching and text analysis.
This package provides a novel numerical algorithm that provides functionality for estimating the exact 95% confidence interval of the location parameter in the random effects model, and is much faster than the naive method. Works best when the number of studies is between 6-20.
Implementation of the Robust Gauss-Newton (RGN) algorithm, designed for solving optimization problems with a sum of least squares objective function. For algorithm details please refer to Qin et. al. (2018) <doi:10.1029/2017WR022488>.
This package provides a method to decompose a univariate time series into meaningful subcomponents for analysis and denoising.
An R API Client for Valve's Dota2. RDota2 can be easily used to connect to the Steam API and retrieve data for Valve's popular video game Dota2. You can find out more about Dota2 at <http://store.steampowered.com/app/570/>.
Leverages the functionality of clipboard.js', a JavaScript library for HMTL5-based copy to clipboard from web pages (see <https://clipboardjs.com> for more information), and provides a reactive copy-to-clipboard UI button component, called rclipButton', and a a reactive copy-to-clipboard UI link component, called rclipLink', for shiny R applications.
This package performs RNA emulation and active learning proposed by Heo and Sung (2025) <doi:10.1080/00401706.2024.2376173> for multi-fidelity computer experiments. The RNA emulator is particularly useful when the simulations with different fidelity level are nonlinearly correlated. The hyperparameters in the model are estimated by maximum likelihood estimation.
Collection of tools for the analysis of the resilience of dynamic networks. Created as a classroom project.
This package contains three functions that query AuriQ Systems Essentia Database and return the results in R. essQuery takes a single Essentia command and captures the output in R, where you can save the output to a dataframe or stream it directly into additional analysis. read.essentia takes an Essentia script and captures the output csv data into R, where you can save the output to a dataframe or stream it directly into additional analysis. capture.essentia takes a file containing any number of Essentia commands and captures the output of the specified statements into R dataframes. Essentia can be downloaded for free at http://www.auriq.com/documentation/source/install/index.html.