Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The Ryan-Holm step-down Bonferroni or Sidak procedure is to control the family-wise (experiment-wise) type I error rate in the multiple comparisons. This procedure provides the adjusting p-values and adjusting CIs. The methods used in this package are referenced from John Ludbrook (2000) <doi:10.1046/j.1440-1681.2000.03223.x>.
This package provides the log-likelihoods with gradients from stan (Carpenter et al (2015), <doi:10.48550/arXiv.1509.07164>) needed for generalized log-likelihood estimation in nlmixr2 (Fidler et al (2019) <doi:10.1002/psp4.12445>). This is split of to reduce computational burden of recompiling rxode2 (Wang, Hallow and James (2016) <doi:10.1002/psp4.12052>) which runs the nlmixr2 models during estimation.
This package provides a modified implementation of stepwise regression that greedily searches the space of interactions among features in order to build polynomial regression models. Furthermore, the hypothesis tests conducted are valid-post model selection due to the use of a revisiting procedure that implements an alpha-investing rule. As a result, the set of rejected sequential hypotheses is proven to control the marginal false discover rate. When not searching for polynomials, the package provides a statistically valid algorithm to run and terminate stepwise regression. For more information, see Johnson, Stine, and Foster (2019) <arXiv:1510.06322>.
Direct insertion of over 1000 symbols (e.g. currencies, letters, emojis, arrows, mathematical symbols and so on) into Rmarkdown documents and Shiny applications by incorporating HTML hex codes.
Computes linear Bayesian spectral estimates from multirate data for second-order stationary time series. Provides credible intervals and methods for plotting various spectral estimates. Please see the paper `Should we sample a time series more frequently? (doi below) for a full description of and motivation for the methodology.
Leaf angle distribution is described by a number of functions (e.g. ellipsoidal, Beta and rotated ellipsoidal). The parameters of leaf angle distributions functions are estimated through different empirical relationship. This package includes estimations of parameters of different leaf angle distribution function, plots and evaluates leaf angle distribution functions, calculates extinction coefficients given leaf angle distribution. Reference: Wang(2007)<doi:10.1016/j.agrformet.2006.12.003>.
This package provides functions to reconstruct sessions from web log or other user trace data and calculate various metrics around them, producing tabular, output that is compatible with dplyr or data.table centered processes.
This package contains functions to retrieve, organize, and visualize weather data from the NCEP/NCAR Reanalysis (<https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html>) and NCEP/DOE Reanalysis II (<https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html>) datasets. Data are queried via the Internet and may be obtained for a specified spatial and temporal extent or interpolated to a point in space and time. We also provide functions to visualize these weather data on a map. There are also functions to simulate flight trajectories according to specified behavior using either NCEP wind data or data specified by the user.
EZR (Easy R) adds a variety of statistical functions, including survival analyses, ROC analyses, metaanalyses, sample size calculation, and so on, to the R commander. EZR enables point-and-click easy access to statistical functions, especially for medical statistics. EZR is platform-independent and runs on Windows, Mac OS X, and UNIX. Its complete manual is available only in Japanese (Chugai Igakusha, ISBN: 978-4-498-10918-6, Nankodo, ISBN: 978-4-524-21861-5, Ohmsha, ISBN: 978-4-274-22632-8), but an report that introduced the investigation of EZR was published in Bone Marrow Transplantation (Nature Publishing Group) as an Open article. This report can be used as a simple manual. It can be freely downloaded from the journal website as shown below. This report has been cited in more than 14,000 scientific articles.
This package contains functions to generate random numbers from the beta distribution and random vectors from the Dirichlet distribution.
This package provides a set of tools to process and calculate metrics on point clouds derived from terrestrial LiDAR (Light Detection and Ranging; TLS). Its creation is based on key aspects of the TLS application in forestry and ecology. Currently, the main routines are based on filtering, neighboring features of points, voxelization, canopy structure, and the creation of artificial stands. It is written using data.table and C++ language and in most of the functions it is possible to use parallel processing to speed-up the routines.
Scalable implementation of classification and regression forests, as described by Breiman (2001), <DOI:10.1023/A:1010933404324>.
Suite of tools for using D3', a library for producing dynamic, interactive data visualizations. Supports translating objects into D3 friendly data structures, rendering D3 scripts, publishing D3 visualizations, incorporating D3 in R Markdown, creating interactive D3 applications with Shiny, and distributing D3 based htmlwidgets in R packages.
Function for generating random gender and ethnicity correct first and/or last names. Names are chosen proportionally based upon their probability of appearing in a large scale data base of real names.
In order to facilitate R instruction for actuaries, we have organized several sets of publicly available data of interest to non-life actuaries. In addition, we suggest a set of packages, which most practicing actuaries will use routinely. Finally, there is an R markdown skeleton for basic reserve analysis.
Decimal rounding is non-trivial in binary arithmetic. ISO standard round to even is more rare than typically assumed as most decimal fractions are not exactly representable in binary. Our roundX() versions explore differences between current and potential future versions of round() in R. Further, provides (some partly related) C99 math lib functions not in base R.
An interactive web application for reliability analysis using the shiny <https://shiny.posit.co/> framework. The app provides an easy-to-use interface for performing reliability analysis using WeibullR <https://cran.r-project.org/package=WeibullR> and ReliaGrowR <https://cran.r-project.org/package=ReliaGrowR>.
This package provides functionality to prepare data and analyze plausibility of both forecasted and reported epidemiological signals. The functions implement a set of plausibility algorithms that are agnostic to geographic and time resolutions and are calculated independently then presented as a combined score.
Fast design of risk parity portfolios for financial investment. The goal of the risk parity portfolio formulation is to equalize or distribute the risk contributions of the different assets, which is missing if we simply consider the overall volatility of the portfolio as in the mean-variance Markowitz portfolio. In addition to the vanilla formulation, where the risk contributions are perfectly equalized subject to no shortselling and budget constraints, many other formulations are considered that allow for box constraints and shortselling, as well as the inclusion of additional objectives like the expected return and overall variance. See vignette for a detailed documentation and comparison, with several illustrative examples. The package is based on the papers: Y. Feng, and D. P. Palomar (2015). SCRIP: Successive Convex Optimization Methods for Risk Parity Portfolio Design. IEEE Trans. on Signal Processing, vol. 63, no. 19, pp. 5285-5300. <doi:10.1109/TSP.2015.2452219>. F. Spinu (2013), An Algorithm for Computing Risk Parity Weights. <doi:10.2139/ssrn.2297383>. T. Griveau-Billion, J. Richard, and T. Roncalli (2013). A fast algorithm for computing High-dimensional risk parity portfolios. <arXiv:1311.4057>.
Read and write labelled sparse matrices in text format as used by software such as SVMLight', LibSVM', ThunderSVM', LibFM', xLearn', XGBoost', LightGBM', and others. Supports labelled data for regression, classification (binary, multi-class, multi-label), and ranking (with qid field), and can handle header metadata and comments in files.
This package implements the robust functional analysis of variance (RoFANOVA), described in Centofanti et al. (2023) <doi:10.1093/jrsssc/qlad074>. It allows testing mean differences among groups of functional data by being robust against the presence of outliers.
Calculates relevance and significance values for simple models and for many types of regression models. These are introduced in Stahel, Werner A. (2021) "Measuring Significance and Relevance instead of p-values." <https://stat.ethz.ch/~stahel/relevance/stahel-relevance2103.pdf>. These notions are also applied to replication studies, as described in the manuscript Stahel, Werner A. (2022) "'Replicability': Terminology, Measuring Success, and Strategy" available in the documentation.
This package contains logic for sample-level variable set scoring using randomized reduced rank reconstruction error. Frost, H. Robert (2023) "Reconstruction Set Test (RESET): a computationally efficient method for single sample gene set testing based on randomized reduced rank reconstruction error" <doi:10.1101/2023.04.03.535366>.
Symbolic Data Analysis (SDA) was proposed by professor Edwin Diday in 1987, the main purpose of SDA is to substitute the set of rows (cases) in the data table for a concept (second order statistical unit). This package implements, to the symbolic case, certain techniques of automatic classification, as well as some linear models.