Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Minirhizotrons are widely used to observe and explore roots and their growth. This package provides the means to stitch images and divide them into depth layers. Please note that this R package was developed alongside the following manuscript: Stitching root scans and extracting depth layer information -- a workflow and practical examples, S. Kersting, L. Knüver, and M. Fischer. The manuscript is currently in preparation and should be citet as soon as it is available. This project was supported by the project ArtIGROW, which is a part of the WIR!-Alliance ArtIFARM â Artificial Intelligence in Farming funded by the German Federal Ministry of Research, Technology and Space (No. 03WIR4805).
Rcmdr plug-in GUI extension for Evidence Based Medicine medical indicators calculations (Sensitivity, specificity, absolute risk reduction, relative risk, ...).
When creating a package, authors may sometimes struggle with coming up with easy and straightforward function names, and at the same time hoping that other packages do not already have the same function names. In trying to meet this goal, sometimes, function names are not descriptive enough and may confuse the potential users. The purpose of this package is to serve as a package function short form generator and also provide shorthand names for other functions. Having this package will entice authors to create long function names without the fear of users not wanting to use their packages because of the long names. In a way, everyone wins - the authors can use long descriptive function names, and the users can use this package to make short functions names while still using the package in question.
Allows users to import data files containing heartbeat positions in the most broadly used formats, to remove outliers or points with unacceptable physiological values present in the time series, to plot HRV data, and to perform time domain, frequency domain and nonlinear HRV analysis. See Garcia et al. (2017) <DOI:10.1007/978-3-319-65355-6>.
Traditional latent variable models assume that the population is homogeneous, meaning that all individuals in the population are assumed to have the same latent structure. However, this assumption is often violated in practice given that individuals may differ in their age, gender, socioeconomic status, and other factors that can affect their latent structure. The robust expectation maximization (REM) algorithm is a statistical method for estimating the parameters of a latent variable model in the presence of population heterogeneity as recommended by Nieser & Cochran (2023) <doi:10.1037/met0000413>. The REM algorithm is based on the expectation-maximization (EM) algorithm, but it allows for the case when all the data are generated by the assumed data generating model.
This package provides a collection of functions to estimate Rogers-Castro migration age schedules using Stan'. This model which describes the fundamental relationship between migration and age in the form of a flexible multi-exponential migration model was most notably proposed in Rogers and Castro (1978) <doi:10.1068/a100475>.
This package implements an interface to Minecraft (Bedrock Edition) worlds. Supports the analysis and management of these worlds and game saves.
This package provides tools for linear, nonlinear and nonparametric regression and classification. Novel graphical methods for assessment of parametric models using nonparametric methods. One vs. All and All vs. All multiclass classification, optional class probabilities adjustment. Nonparametric regression (k-NN) for general dimension, local-linear option. Nonlinear regression with Eickert-White method for dealing with heteroscedasticity. Utilities for converting time series to rectangular form. Utilities for conversion between factors and indicator variables. Some code related to "Statistical Regression and Classification: from Linear Models to Machine Learning", N. Matloff, 2017, CRC, ISBN 9781498710916.
The regression discontinuity (RD) design is a popular quasi-experimental design for causal inference and policy evaluation. The rdmulti package provides tools to analyze RD designs with multiple cutoffs or scores: rdmc() estimates pooled and cutoff specific effects for multi-cutoff designs, rdmcplot() draws RD plots for multi-cutoff designs and rdms() estimates effects in cumulative cutoffs or multi-score designs. See Cattaneo, Titiunik and Vazquez-Bare (2020) <https://rdpackages.github.io/references/Cattaneo-Titiunik-VazquezBare_2020_Stata.pdf> for further methodological details.
Algorithms for estimating robustly the parameters of a Gaussian, Student, or Laplace Mixture Model.
The GenDataSample() and GenDataPopulation() functions create, respectively, a sample or population of multivariate nonnormal data using methods described in Ruscio and Kaczetow (2008). Both of these functions call a FactorAnalysis() function to reproduce a correlation matrix. The EFACompData() function allows users to determine how many factors to retain in an exploratory factor analysis of an empirical data set using a method described in Ruscio and Roche (2012). The latter function uses populations of comparison data created by calling the GenDataPopulation() function. <DOI: 10.1080/00273170802285693>. <DOI: 10.1037/a0025697>.
Reliable and flexible tools for scoring redistricting plans using common measures and metrics. These functions provide key direct access to tools useful for non-simulation analyses of redistricting plans, such as for measuring compactness or partisan fairness. Tools are designed to work with the redist package seamlessly.
Compute yield-stability index based on Bayesian methodology, which is useful for analyze multi-environment trials in plant breeding programs. References: Cotes Torres JM, Gonzalez Jaimes EP, and Cotes Torres A (2016) <https://revistas.unimilitar.edu.co/index.php/rfcb/article/view/2037> Seleccion de Genotipos con Alta Respuesta y Estabilidad Fenotipica en Pruebas Regionales: Recuperando el Concepto Biologico.
SurveyCTO is a platform for mobile data collection in offline settings. The rsurveycto R package uses the SurveyCTO REST API <https://docs.surveycto.com/05-exporting-and-publishing-data/05-api-access/01.api-access.html> to read datasets and forms from a SurveyCTO server into R as data.table's and to download file attachments. The package also has limited support to write datasets to a server.
Color palettes from famous artists and paintings.
Allow access to both public and private end points to Coinbase Pro (erstwhile GDAX) cryptocurrency exchange. For authenticated flow, users must have valid api, secret and passphrase to be able to connect.
The TRUST4 or MiXCR is used to identify the clonotypes. The goal of rTCRBCRr is to process the results from these clonotyping tools, and analyze the clonotype repertoire metrics based on chain names and IGH isotypes. The manuscript is still under preparation for publication for now. The references describing the methods in this package will be added later.
This package implements ROC (Receiver Operating Characteristic)â Optimizing Binary Classifiers, supporting both linear and kernel models. Both model types provide a variety of surrogate loss functions. In addition, linear models offer multiple regularization penalties, whereas kernel models support a range of kernel functions. Scalability for large datasets is achieved through approximation-based options, which accelerate training and make fitting feasible on large data. Utilities are provided for model training, prediction, and cross-validation. The implementation builds on the ROC-Optimizing Support Vector Machines. For more information, see Hernà ndez-Orallo, José, et al. (2004) <doi:10.1145/1046456.1046489>, presented in the ROC Analysis in AI Workshop (ROCAI-2004).
Robustness checks for omitted variable bias. The package includes robustness checks proposed by Oster (2019). The robomit package computes i) the bias-adjusted treatment correlation or effect and ii) the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result based on the framework by Oster (2019). The code is based on the psacalc command in Stata'. Additionally, robomit offers a set of sensitivity analysis and visualization functions. See Oster, E. 2019. <doi:10.1080/07350015.2016.1227711>. Additionally, see Diegert, P., Masten, M. A., & Poirier, A. (2022) for a recent discussion of the topic: <doi:10.48550/arXiv.2206.02303>.
R functions for generating and/or displaying random Chuck Norris facts. Based on data from the Internet Chuck Norris database ('ICNDb').
Enables binary package installations on Linux distributions. Provides access to RStudio public repositories at <https://packagemanager.posit.co>, and transparent management of system requirements without administrative privileges. Currently supported distributions are CentOS / RHEL', and several RHEL derivatives ('Rocky Linux', AlmaLinux', Oracle Linux', and Amazon Linux'), openSUSE / SLES', Debian', and Ubuntu LTS.
Image data used as examples in the loon R package.
Graphics for statistics on a sphere, as applied to geological fault data, crystallography, earthquake focal mechanisms, radiation patterns, ternary plots and geographical/geological maps. Non-double couple plotting of focal spheres and source type maps are included for statistical analysis of moment tensors.
Client for the web service methods provided by DataCite (<https://www.datacite.org/>), including functions to interface with their RESTful search API. The API is backed by Elasticsearch', allowing expressive queries, including faceting.