Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An integrated set of tools to allow data users to conduct meteorological normalisation and counterfactual modelling for air quality data. The meteorological normalisation technique uses predictive random forest models to remove variation of pollutant concentrations so trends and interventions can be explored in a robust way. For examples, see Grange et al. (2018) <doi:10.5194/acp-18-6223-2018> and Grange and Carslaw (2019) <doi:10.1016/j.scitotenv.2018.10.344>. The random forest models can also be used for counterfactual or business as usual (BAU) modelling by using the models to predict, from the model's perspective, the future. For an example, see Grange et al. (2021) <doi:10.5194/acp-2020-1171>.
This package provides functions to assist manipulation of matrix row and column labels for all types of matrix mathematics where row and column labels are to be respected.
Work with the PhyloPic Web Service (<http://api-docs.phylopic.org/v2/>) to fetch silhouette images of organisms. Includes functions for adding silhouettes to both base R plots and ggplot2 plots.
Algorithms for the spatial stratification of landscapes, sampling and modeling of spatially-varying phenomena. These algorithms offer a simple framework for the stratification of geographic space based on raster layers representing landscape factors and/or factor scales. The stratification process follows a hierarchical approach, which is based on first level units (i.e., classification units) and second-level units (i.e., stratification units). Nonparametric techniques allow to measure the correspondence between the geographic space and the landscape configuration represented by the units. These correspondence metrics are useful to define sampling schemes and to model the spatial variability of environmental phenomena. The theoretical background of the algorithms and code examples are presented in Fuentes et al. (2022). <doi:10.32614/RJ-2022-036>.
This package implements the algorithm by Pourahmadi and Wang (2015) <doi:10.1016/j.spl.2015.06.015> for generating a random p x p correlation matrix. Briefly, the idea is to represent the correlation matrix using Cholesky factorization and p(p-1)/2 hyperspherical coordinates (i.e., angles), sample the angles from a particular distribution and then convert to the standard correlation matrix form. The angles are sampled from a distribution with pdf proportional to sin^k(theta) (0 < theta < pi, k >= 1) using the efficient sampling algorithm described in Enes Makalic and Daniel F. Schmidt (2018) <arXiv:1809.05212>.
This package provides access to geocomputing and terrain analysis functions of the geographical information system (GIS) SAGA (System for Automated Geoscientific Analyses) from within R by running the command line version of SAGA. This package furthermore provides several R functions for handling ASCII grids, including a flexible framework for applying local functions (including predict methods of fitted models) and focal functions to multiple grids. SAGA GIS is available under GPL-2 / LGPL-2 licences from <https://sourceforge.net/projects/saga-gis/>.
This package provides methods and tools for Singular Spectrum Analysis including decomposition, forecasting and gap-filling for univariate and multivariate time series. General description of the methods with many examples can be found in the book Golyandina (2018, <doi:10.1007/978-3-662-57380-8>). See citation("Rssa") for details.
The glTF file format is used to describe 3D models. This package provides read and write functions to work with it.
Detecting outliers using robust methods, i.e. the Median Absolute Deviation (MAD) for univariate outliers; Leys, Ley, Klein, Bernard, & Licata (2013) <doi:10.1016/j.jesp.2013.03.013> and the Mahalanobis-Minimum Covariance Determinant (MMCD) for multivariate outliers; Leys, C., Klein, O., Dominicy, Y. & Ley, C. (2018) <doi:10.1016/j.jesp.2017.09.011>. There is also the more known but less robust Mahalanobis distance method, only for comparison purposes.
Wraps tiny_obj_loader C++ library for reading the Wavefront OBJ 3D file format including both mesh objects and materials files. The resultant R objects are either structured to match the tiny_obj_loader internal data representation or in a form directly compatible with the rgl package.
Allows the user to view an image in full screen when clicking on it in RMarkdown documents and shiny applications. The package relies on the JavaScript library intense-images'. See <https://tholman.com/intense-images/> for more information.
This package provides various statistical methods for designing and analyzing two-stage randomized controlled trials using the methods developed by Imai, Jiang, and Malani (2021) <doi:10.1080/01621459.2020.1775612> and (2022+) <doi:10.48550/arXiv.2011.07677>. The package enables the estimation of direct and spillover effects, conduct hypotheses tests, and conduct sample size calculation for two-stage randomized controlled trials.
This package provides tools for large, sparse optimal matching of treated units and control units in observational studies. Provisions are made for refined covariate balance constraints, which include fine and near-fine balance as special cases. Matches are optimal in the sense that they are computed as solutions to network optimization problems rather than greedy algorithms. See Pimentel, et al.(2015) <doi:10.1080/01621459.2014.997879> and Pimentel (2016), Obs. Studies 2(1):4-23. The rrelaxiv package, which provides an alternative solver for the underlying network flow problems, carries an academic license and is not available on CRAN, but may be downloaded from Github at <https://github.com/josherrickson/rrelaxiv/>.
Este paquete proporciona una interfaz grafica de usuario (GUI) para algunos de los procedimientos estadisticos detallados en un curso de Estadistica aplicada a las Ciencias Sociales mediante el programa informatico R (EACSPIR). LA GUI se ha desarrollado como un Plugin del programa R-Commander.
It fires a query to the API to get the unsampled data in R for Google Analytics Premium Accounts. It retrieves data from the Google drive document and stores it into the local drive. The path to the excel file is returned by this package. The user can read data from the excel file into R using read.csv() function.
This package provides a trimmed down copy of the "kent-core source tree" turned into a C library for manipulation of .2bit files. See <https://genome.ucsc.edu/FAQ/FAQformat.html#format7> for a quick overview of the 2bit format. The "kent-core source tree" can be found here: <https://github.com/ucscGenomeBrowser/kent-core/>. Only the .c and .h files from the source tree that are related to manipulation of .2bit files were kept. Note that the package is primarily useful to developers of other R packages who wish to use the 2bit C library in their own C'/'C++ code.
This package provides functions to read and write ImageJ (<https://imagej.net>) Region of Interest (ROI) files, to plot the ROIs and to convert them to spatstat (<https://spatstat.org/>) spatial patterns.
Allows to limit the rate at which one or more functions can be called.
Calculate the matrices in Shiller (1991, <doi:10.1016/S1051-1377(05)80028-2>) that serve as the foundation for many repeat-sales price indexes.
Based on the qspray package, this package introduces the new type ratioOfQsprays'. An object of type qspray represents a multivariate polynomial with rational coefficients while an object of type ratioOfQsprays', defined by two qspray objects, represents a fraction of two multivariate polynomials with rational coefficients. Arithmetic operations for these objects are available, and they always return irreducible fractions. Other features include: differentiation, evaluation, conversion to a function, and fine control of the way to print a ratioOfQsprays object. The C++ library CGAL is used to make the fractions irreducible.
This package performs two-sample comparisons using the restricted mean survival time (RMST) when survival curves end at different time points between groups. This package implements a sensitivity approach that allows the threshold timepoint tau to be specified after the longest survival time in the shorter survival group. Two kinds of between-group contrast estimators (the difference in RMST and the ratio of RMST) are computed: Uno et al(2014)<doi:10.1200/JCO.2014.55.2208>, Uno et al(2022)<https://CRAN.R-project.org/package=survRM2>, Ueno and Morita(2023)<doi:10.1007/s43441-022-00484-z>.
Diagnostics and data preparation for random effects within estimator, random effects within-idiosyncratic estimator, between-within-idiosyncratic model, and cross-classified between model. Mundlak, Yair (1978) <doi:10.2307/1913646>. Hausman, Jeffrey (1978) <doi:10.2307/1913827>. Allison, Paul (2009) <doi:10.4135/9781412993869>. Neuhaus, J.M., and J. D. Kalbfleisch (1998) <doi:10.2307/3109770>.
This package provides functions for fitting a linear regression model with ARIMA errors using a filtered tau-estimate. The methodology is described in Maronna et al (2017, ISBN:9781119214687).
This package provides a method generate() is implemented in this package for the random generation of vector time series according to models obtained by RMAWGEN', vars or other packages. This package was created to generalize the algorithms of the RMAWGEN package for the analysis and generation of any environmental vector time series.