Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes word, character, and non-whitespace character counts in R Markdown documents and Jupyter notebooks, with or without code chunks. Returns results as a data frame.
The method generate() is extended for spatial multi-site stochastic generation of daily precipitation. It generates precipitation occurrence in several sites using logit regression (Generalized Linear Models) and the approach by D.S. Wilks (1998) <doi:10.1016/S0022-1694(98)00186-3> .
This package provides interface to Google Fit REST API v1 (see <https://developers.google.com/fit/rest/v1/reference/>).
An R6 class "Replacer" provided by the package simplifies working with regex patterns containing named groups. It allows easy retrieval of matched portions and targeted replacements by group name, improving both code clarity and maintainability.
The traditional linear regression trend, Modified Mann-Kendall (MK) non-parameter trend and bootstrap trend are included in this package. Linear regression trend is rewritten by .lm.fit'. MK trend is rewritten by Rcpp'. Finally, those functions are about 10 times faster than previous version in R. Reference: Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology, 204(1-4), 182-196. <doi:10.1016/S0022-1694(97)00125-X>.
This package provides a framework for the measurement and partitioning of the (similarity-sensitive) biodiversity of a metacommunity and its constituent subcommunities. Richard Reeve, et al. (2016) <arXiv:1404.6520v3>.
This package implements Kornbrot's rank difference test as described in <doi:10.1111/j.2044-8317.1990.tb00939.x>. This method is a modified Wilcoxon signed-rank test which produces consistent and meaningful results for ordinal or monotonically-transformed data.
This is a wrapper function for image(), which makes reasonable raster plots with nice axis and other useful features.
This package provides a dataset of functions in all base and recommended packages of R versions 0.50 onwards.
Fits standard and random effects latent class models. The single level random effects model is described in Qu et al <doi:10.2307/2533043> and the two level random effects model in Beath and Heller <doi:10.1177/1471082X0800900302>. Examples are given for their use in diagnostic testing.
Enhances the R Optimization Infrastructure ('ROI') package by registering the free GLPK solver. It allows for solving mixed integer linear programming ('MILP') problems as well as all variants/combinations of LP', IP'.
Learning modules for reliability analysis including modules for Reliability, Availability, and Maintainability (RAM) Analysis, Life Data Analysis, and Reliability Testing.
Linear and logistic ridge regression functions. Additionally includes special functions for genome-wide single-nucleotide polymorphism (SNP) data. More details can be found in <doi: 10.1002/gepi.21750> and <doi: 10.1186/1471-2105-12-372>.
Set of tools to manipulate the JDemetra+ workspaces. Based on the RJDemetra package (which interfaces with version 2 of the JDemetra+ (<https://github.com/jdemetra/jdemetra-app>), the seasonal adjustment software officially recommended to the members of the European Statistical System (ESS) and the European System of Central Banks). This package provides access to additional workspace manipulation functions such as metadata manipulation, raw paths and wrangling of several workspaces simultaneously. These additional functionalities are useful as part of a CVS data production chain.
The ropenblas package (<https://prdm0.github.io/ropenblas/>) is useful for users of any GNU/Linux distribution. It will be possible to download, compile and link the OpenBLAS library (<https://www.openblas.net/>) with the R language, always by the same procedure, regardless of the GNU/Linux distribution used. With the ropenblas package it is possible to download, compile and link the latest version of the OpenBLAS library even the repositories of the GNU/Linux distribution used do not include the latest versions of OpenBLAS'. If of interest, older versions of the OpenBLAS library may be considered. Linking R with an optimized version of BLAS (<https://netlib.org/blas/>) may improve the computational performance of R code. The OpenBLAS library is an optimized implementation of BLAS that can be easily linked to R with the ropenblas package.
This package provides algorithms to locate multiple distributional change-points in piecewise stationary time series. The algorithms are provably consistent, even in the presence of long-range dependencies. Knowledge of the number of change-points is not required. The code is written in Go and interfaced with R.
This package provides an interface to the Vamp audio analysis plugin system <https://www.vamp-plugins.org/> developed by Queen Mary University of London's Centre for Digital Music. Enables loading and running Vamp plugins for various audio analysis tasks including tempo detection, onset detection, spectral analysis, and audio feature extraction. Supports mono and stereo audio with automatic channel adaptation and domain conversion.
Implementations of algorithms for data analysis based on the rough set theory (RST) and the fuzzy rough set theory (FRST). We not only provide implementations for the basic concepts of RST and FRST but also popular algorithms that derive from those theories. The methods included in the package can be divided into several categories based on their functionality: discretization, feature selection, instance selection, rule induction and classification based on nearest neighbors. RST was introduced by ZdzisÅ aw Pawlak in 1982 as a sophisticated mathematical tool to model and process imprecise or incomplete information. By using the indiscernibility relation for objects/instances, RST does not require additional parameters to analyze the data. FRST is an extension of RST. The FRST combines concepts of vagueness and indiscernibility that are expressed with fuzzy sets (as proposed by Zadeh, in 1965) and RST.
This package provides a toolkit for making antigenic maps from immunological assay data, in order to quantify and visualize antigenic differences between different pathogen strains as described in Smith et al. (2004) <doi:10.1126/science.1097211> and used in the World Health Organization influenza vaccine strain selection process. Additional functions allow for the diagnostic evaluation of antigenic maps and an interactive viewer is provided to explore antigenic relationships amongst several strains and incorporate the visualization of associated genetic information.
Maximum likelihood estimation for univariate reducible stochastic differential equation models. Discrete, possibly noisy observations, not necessarily evenly spaced in time. Can fit multiple individuals/units with global and local parameters, by fixed-effects or mixed-effects methods. Ref.: Garcia, O. (2019) "Estimating reducible stochastic differential equations by conversion to a least-squares problem", Computational Statistics 34(1): 23-46, <doi:10.1007/s00180-018-0837-4>.
Rasterize images using a 3D software renderer. 3D scenes are created either by importing external files, building scenes out of the included objects, or by constructing meshes manually. Supports point and directional lights, anti-aliased lines, shadow mapping, transparent objects, translucent objects, multiple materials types, reflection, refraction, environment maps, multicore rendering, bloom, tone-mapping, and screen-space ambient occlusion.
This package provides a programmatic interface to the Request Tracker (RT) HTTP API <https://rt-wiki.bestpractical.com/wiki/REST>. RT is a popular ticket tracking system.
This package implements a series of robust Kalman filtering approaches. It implements the additive outlier robust filters of Ruckdeschel et al. (2014) <arXiv:1204.3358> and Agamennoni et al. (2018) <doi:10.1109/ICRA.2011.5979605>, the innovative outlier robust filter of Ruckdeschel et al. (2014) <arXiv:1204.3358>, as well as the innovative and additive outlier robust filter of Fisch et al. (2020) <arXiv:2007.03238>.
Visualizations to explain the results of a topological data analysis. The goal of topological data analysis is to identify persistent topological structures, such as loops (topological circles) and voids (topological spheres), in data sets. The output of an analysis using the TDA package is a Rips diagram (named after the mathematician Eliyahu Rips). The goal of RPointCloud is to fill in these holes in the data by providing tools to visualize the features that help explain the structures found in the Rips diagram. See McGee and colleagues (2024) <doi:10.1101/2024.05.16.593927>.