Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Robust pairwise correlations based on estimates of scale, particularly on "FastQn" one-step M-estimate.
Allows developers to work with many R folders inside a package. It offers functionalities to transfer R scripts (saved outside the R folder) into the R folder while making additional checks.
This package provides color schemes for maps and other graphics designed by CARTO as described at <https://carto.com/carto-colors/>. It includes four types of palettes: aggregation, diverging, qualitative, and quantitative.
Downloading, customizing, and processing time series of satellite images for a region of interest. rsat functions allow a unified access to multispectral images from Landsat, MODIS and Sentinel repositories. rsat also offers capabilities for customizing satellite images, such as tile mosaicking, image cropping and new variables computation. Finally, rsat covers the processing, including cloud masking, compositing and gap-filling/smoothing time series of images (Militino et al., 2018 <doi:10.3390/rs10030398> and Militino et al., 2019 <doi:10.1109/TGRS.2019.2904193>).
Computation of one-, two- and three-dimensional pseudo-observations based on recurrent events and terminal events. Generalised linear models are fitted using generalised estimating equations. Technical details on the bivariate procedure can be found in "Bivariate pseudo-observations for recurrent event analysis with terminal events" (Furberg et al., 2021) <doi:10.1007/s10985-021-09533-5>.
Calculation of ratios between two data sets containing environmental data like element concentrations by different methods. Additionally plant element concentrations can be corrected for adhering particles (soil, airborne dust).
This package provides functions for linking and deduplicating data sets. Methods based on a stochastic approach are implemented as well as classification algorithms from the machine learning domain. For details, see our paper "The RecordLinkage Package: Detecting Errors in Data" Sariyar M / Borg A (2010) <doi:10.32614/RJ-2010-017>.
Collection of tools for the analysis of the resilience of dynamic networks. Created as a classroom project.
Connector to the REST API of a Rock R server, to perform operations on a remote R server session, or administration tasks. See Rock documentation at <https://rockdoc.obiba.org/>.
We develop the entire solution paths for ROC-SVM presented by Rakotomamonjy. The ROC-SVM solution path algorithm greatly facilitates the tuning procedure for regularization parameter, lambda in ROC-SVM by avoiding grid search algorithm which may be computationally too intensive. For more information on the ROC-SVM, see the report in the ROC Analysis in AI workshop(ROCAI-2004) : Hernà ndez-Orallo, José, et al. (2004) <doi:10.1145/1046456.1046489>.
Maximum likelihood estimation for univariate reducible stochastic differential equation models. Discrete, possibly noisy observations, not necessarily evenly spaced in time. Can fit multiple individuals/units with global and local parameters, by fixed-effects or mixed-effects methods. Ref.: Garcia, O. (2019) "Estimating reducible stochastic differential equations by conversion to a least-squares problem", Computational Statistics 34(1): 23-46, <doi:10.1007/s00180-018-0837-4>.
This package performs penalized quantile regression with LASSO, elastic net, SCAD and MCP penalty functions including group penalties. In addition, offers a group penalty that provides consistent variable selection across quantiles. Provides a function that automatically generates lambdas and evaluates different models with cross validation or BIC, including a large p version of BIC. Below URL provides a link to article in the R Journal.
Computation of (direct and indirect) revealed preferences, fast non-parametric tests of rationality axioms (WARP, SARP, GARP), simulation of axiom-consistent data, and detection of axiom-consistent subpopulations. Rationality tests follow Varian (1982) <doi:10.2307/1912771>, axiom-consistent subpopulations follow Crawford and Pendakur (2012) <doi:10.1111/j.1468-0297.2012.02545.x>.
These tools were created to test map-scale hypotheses about trends in large remotely sensed data sets but any data with spatial and temporal variation can be analyzed. Tests are conducted using the PARTS method for analyzing spatially autocorrelated time series (Ives et al., 2021: <doi:10.1016/j.rse.2021.112678>). The method's unique approach can handle extremely large data sets that other spatiotemporal models cannot, while still appropriately accounting for spatial and temporal autocorrelation. This is done by partitioning the data into smaller chunks, analyzing chunks separately and then combining the separate analyses into a single, correlated test of the map-scale hypotheses.
This package provides a shiny module to facilitate page layouts with resizable panes for page content based on split.js JavaScript library (<https://split.js.org>).
Get the category of content hosted by a domain. Use Shallalist <http://shalla.de/>, Virustotal (which provides access to lots of services) <https://www.virustotal.com/>, Alexa <https://aws.amazon.com/awis/>, DMOZ <https://curlie.org/>, University Domain list <https://github.com/Hipo/university-domains-list> or validated machine learning classifiers based on Shallalist data to learn about the kind of content hosted by a domain.
Import Data from Relational Database Management Systems (RDBMS) and Health Information Systems ('HIS'). The current version of the package supports importing data from RDBMS including MS SQL', MySQL', PostGRESQL', and SQLite', as well as from two HIS platforms: DHIS2 and SORMAS'.
This package provides tools for filtering occurrence records, generating alpha-hull-derived range polygons and mapping species distributions.
Calculates robust Matthews Correlation Coefficient (MCC) and robust F-Beta Scores, as introduced by Holzmann and Klar (2024) <doi:10.48550/arXiv.2404.07661>. These performance metrics are designed for imbalanced classification problems. Plots the receiver operating characteristic curve (ROC curve) together with the recall / 1-precision curve.
This package provides methods to calculate approximate regional consistency probabilities using Method 1 and Method 2 proposed by the Japanese Ministry of Health, Labor and Welfare (2007) <https://www.pmda.go.jp/files/000153265.pdf>. These methods are useful for assessing regional consistency in multi-regional clinical trials. The package can calculate unconditional, joint, and conditional regional consistency probabilities. For technical details, please see Homma (2024) <doi:10.1002/pst.2358>.
This package provides functions for reconstructing individual-level data (time, status, arm) from Kaplan-MEIER curves published in academic journals (e.g. NEJM, JCO, JAMA). The individual-level data can be used for re-analysis, meta-analysis, methodology development, etc. This package was used to generate the data for commentary such as Sun, Rich, & Wei (2018) <doi:10.1056/NEJMc1808567>. Please see the vignette for a quickstart guide.
Opens complete record(s) with .gb extension from the NCBI/GenBank Nucleotide database and returns a list containing shaped record(s). These kind of files contains detailed records of DNA samples (locus, organism, type of sequence, source of the sequence...). An example of record can be found at <https://www.ncbi.nlm.nih.gov/nuccore/HE799070>.
MCMC based sampling of binary matrices with fixed margins as used in exact Rasch model tests.
This package implements methods described by the paper Robins and Tsiatis (1991) <DOI:10.1080/03610929108830654>. These use g-estimation to estimate the causal effect of a treatment in a two-armed randomised control trial where non-compliance exists and is measured, under an assumption of an accelerated failure time model and no unmeasured confounders.