Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Parser for SQL statements. Currently, it supports parsing of only SELECT statements.
R-based access to mass-spectrometry (MS) data. While many packages exist to process MS data, many of these make it difficult to access the underlying mass-to-charge ratio (m/z), intensity, and retention time of the files themselves. This package is designed to format MS data in a tidy fashion and allows the user perform the plotting and analysis.
Read and write labelled sparse matrices in text format as used by software such as SVMLight', LibSVM', ThunderSVM', LibFM', xLearn', XGBoost', LightGBM', and others. Supports labelled data for regression, classification (binary, multi-class, multi-label), and ranking (with qid field), and can handle header metadata and comments in files.
This package provides functions to assist manipulation of matrix row and column labels for all types of matrix mathematics where row and column labels are to be respected.
Rho is used to test the generalization of inter rater reliability (IRR) statistics. Calculating rho starts by generating a large number of simulated, fully-coded data sets: a sizable collection of hypothetical populations, all of which have a kappa value below a given threshold -- which indicates unacceptable agreement. Then kappa is calculated on a sample from each of those sets in the collection to see if it is equal to or higher than the kappa in then real sample. If less than five percent of the distribution of samples from the simulated data sets is greater than actual observed kappa, the null hypothesis is rejected and one can conclude that if the two raters had coded the rest of the data, we would have acceptable agreement (kappa above the threshold).
Allows you to interact with the API of the "Todoist" platform. Todoist <https://www.todoist.com/> provides an online task manager service for teams.
This package provides string arithmetic, reassignment operators, logical operators that handle missing values, and extra logical operators such as floating point equality and all or nothing. The intent is to allow R users to write code that is easier to read, write, and maintain while providing a friendlier experience to new R users from other language backgrounds (such as Python') who are used to concepts such as x += 1 and foo + bar'. Includes operators for not in, easy floating point comparisons, === equivalent, and SQL-like like operations (), etc. We also added in some extra helper functions, such as OS checks, pasting in Oxford comma format, and functions to get the first, last, nth, or most common element of a vector or word in a string.
This package provides a supportive collection of functions for gathering and plotting treatment ranking metrics after network meta-analysis.
Mixture Composer <https://github.com/modal-inria/MixtComp> is a project to build mixture models with heterogeneous data sets and partially missing data management. It includes models for real, categorical, counting, functional and ranking data. This package contains the minimal R interface of the C++ MixtComp library.
This package provides a toolkit for Commodities analytics', risk management and trading professionals. Includes functions for API calls to <https://commodities.morningstar.com/#/>, <https://developer.genscape.com/>, and <https://www.bankofcanada.ca/valet/docs>.
This package provides utilities for the design and analysis of replication studies. Features both traditional methods based on statistical significance and more recent methods such as the sceptical p-value; Held L. (2020) <doi:10.1111/rssa.12493>, Held et al. (2022) <doi:10.1214/21-AOAS1502>, Micheloud et al. (2023) <doi:10.1111/stan.12312>. Also provides related methods including the harmonic mean chi-squared test; Held, L. (2020) <doi:10.1111/rssc.12410>, and intrinsic credibility; Held, L. (2019) <doi:10.1098/rsos.181534>. Contains datasets from five large-scale replication projects.
Datasets with energy consumption data of different data measurement frequencies. The data stems from several publicly funded research projects of the Chair of Information Systems and Energy Efficient Systems at the University of Bamberg.
Retime speech signals with a native Waveform Similarity Overlap-Add (WSOLA) implementation translated from the TSM toolbox by Driedger & Müller (2014) <https://www.audiolabs-erlangen.de/content/resources/MIR/TSMtoolbox/2014_DriedgerMueller_TSM-Toolbox_DAFX.pdf>. Design retimings and pitch (f0) transformations with tidy data and apply them via Praat interface. Produce spectrograms, spectra, and amplitude envelopes. Includes implementation of vocalic speech envelope analysis (fft_spectrum) technique and example data (mm1) from Tilsen, S., & Johnson, K. (2008) <doi:10.1121/1.2947626>.
Minirhizotrons are widely used to observe and explore roots and their growth. This package provides the means to stitch images and divide them into depth layers. Please note that this R package was developed alongside the following manuscript: Stitching root scans and extracting depth layer information -- a workflow and practical examples, S. Kersting, L. Knüver, and M. Fischer. The manuscript is currently in preparation and should be citet as soon as it is available. This project was supported by the project ArtIGROW, which is a part of the WIR!-Alliance ArtIFARM â Artificial Intelligence in Farming funded by the German Federal Ministry of Research, Technology and Space (No. 03WIR4805).
This package provides API to Melbourne pedestrian and weather data <https://data.melbourne.vic.gov.au> in tidy data form.
The Stuttgart Neural Network Simulator (SNNS) is a library containing many standard implementations of neural networks. This package wraps the SNNS functionality to make it available from within R. Using the RSNNS low-level interface, all of the algorithmic functionality and flexibility of SNNS can be accessed. Furthermore, the package contains a convenient high-level interface, so that the most common neural network topologies and learning algorithms integrate seamlessly into R.
This package performs both classical and robust panel clustering by applying Principal Component Analysis (PCA) for dimensionality reduction and clustering via standard K-Means or Trimmed K-Means. The method is designed to ensure stable and reliable clustering, even in the presence of outliers. Suitable for analyzing panel data in domains such as economic research, financial time-series, healthcare analytics, and social sciences. The package allows users to choose between classical K-Means for standard clustering and Trimmed K-Means for robust clustering, making it a flexible tool for various applications. For this package, we have benefited from the studies Rencher (2003), Wang and Lu (2021) <DOI:10.25236/AJBM.2021.031018>, Cuesta-Albertos et al. (1997) <https://www.jstor.org/stable/2242558?seq=1>.
This package contains three functions that query AuriQ Systems Essentia Database and return the results in R. essQuery takes a single Essentia command and captures the output in R, where you can save the output to a dataframe or stream it directly into additional analysis. read.essentia takes an Essentia script and captures the output csv data into R, where you can save the output to a dataframe or stream it directly into additional analysis. capture.essentia takes a file containing any number of Essentia commands and captures the output of the specified statements into R dataframes. Essentia can be downloaded for free at http://www.auriq.com/documentation/source/install/index.html.
Connect, execute, and parse results from the Daisi Microservice Platform <https://www.daisi.io/>. The rdaisi client includes a set of functionality that allows remote execution of microservices directly from R. Daisis allow R users to access a wide variety of Python functionality and interact with them natively.
This package provides a simple set of wrappers to easily use RDCOMClient for generating Microsoft PowerPoint presentations. Warning:this package is soon to be archived from CRAN.
Wrapper for widely used SUNDIALS software (SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers) and more precisely to its CVODES solver. It is aiming to solve ordinary differential equations (ODE) and optionally pending forward sensitivity problem. The wrapper is made R friendly by allowing to pass custom parameters to user's callback functions. Such functions can be both written in R and in C++ ('RcppArmadillo flavor). In case of C++', performance is greatly improved so this option is highly advisable when performance matters. If provided, Jacobian matrix can be calculated either in dense or sparse format. In the latter case rmumps package is used to solve corresponding linear systems. Root finding and pending event management are optional and can be specified as R or C++ functions too. This makes them a very flexible tool for controlling the ODE system during the time course simulation. SUNDIALS library was published in Hindmarsh et al. (2005) <doi:10.1145/1089014.1089020>.
Reservoir Systems Standard Operation Policy. A system for simulation of supply reservoirs. It proposes functionalities for plotting and evaluation of supply reservoirs systems.
This package provides a complete interface to LibBi', a library for Bayesian inference (see <https://libbi.org> and Murray, 2015 <doi:10.18637/jss.v067.i10> for more information). This includes functions for manipulating LibBi models, for reading and writing LibBi input/output files, for converting LibBi output to provide traces for use with the coda package, and for running LibBi to conduct inference.
This package provides a piped query generator based on Edgar F. Codd's relational algebra, and on production experience using SQL and dplyr at big data scale. The design represents an attempt to make SQL more teachable by denoting composition by a sequential pipeline notation instead of nested queries or functions. The implementation delivers reliable high performance data processing on large data systems such as Spark', databases, and data.table'. Package features include: data processing trees or pipelines as observable objects (able to report both columns produced and columns used), optimized SQL generation as an explicit user visible table modeling step, plus explicit query reasoning and checking.