Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Helper functions to accompany the Blair, Coppock, and Humphreys (2022) "Research Design in the Social Sciences: Declaration, Diagnosis, and Redesign" <https://book.declaredesign.org>. rdss includes datasets, helper functions, and plotting components to enable use and replication of the book.
Adds menu items for case 3 (multi-profile) best-worst scaling (BWS3) to the R Commander. BWS3 is a question-based survey method that designs various combinations of attribute levels (profiles), asks respondents to select the best and worst profiles in each choice set, and then measures preferences for the attribute levels by analyzing the responses. For details on BWS3, refer to Louviere et al. (2015) <doi:10.1017/CBO9781107337855>.
Base S4-classes and functions for robust asymptotic statistics.
Implementation of Kernelized score functions and other semi-supervised learning algorithms for node label ranking to analyze biomolecular networks. RANKS can be easily applied to a large set of different relevant problems in computational biology, ranging from automatic protein function prediction, to gene disease prioritization and drug repositioning, and more in general to any bioinformatics problem that can be formalized as a node label ranking problem in a graph. The modular nature of the implementation allows to experiment with different score functions and kernels and to easily compare the results with baseline network-based methods such as label propagation and random walk algorithms, as well as to enlarge the algorithmic scheme by adding novel user-defined score functions and kernels.
Useful tools for determining whether two samples are from the same distribution. Utilizes a robust method to address the problematic structure of the similarity graph constructed from high-dimensional data. The method is provided in Yichuan Bai and Lynna Chu (2023) <arXiv:2307.12325>.
ViennaCL is a free open-source linear algebra library for computations on many-core architectures (GPUs, MIC) and multi-core CPUs. The library is written in C++ and supports CUDA', OpenCL', and OpenMP (including switches at runtime). I have placed these libraries in this package as a more efficient distribution system for CRAN. The idea is that you can write a package that depends on the ViennaCL library and yet you do not need to distribute a copy of this code with your package.
Tests linear regressions for significance reversal through leave-one(multiple)-out.
This package provides tools for simulating synthetic survival data using a variety of methods, including kernel density estimation, parametric distribution fitting, and bootstrap resampling techniques for a desired sample size.
This package provides the Jester Dataset for package recommenderlab.
Use R to interface with the TD Ameritrade API <https://developer.tdameritrade.com/>. Functions include authentication, trading, price requests, account information, and option chains. A user will need a TD brokerage account and TD Ameritrade developer app. See README for authentication process and examples.
This package provides R6 classes, methods and utilities to construct, analyze, summarize, and visualize regression models.
Includes sysdata.rda file for packages of the RobASt - family of packages; is currently used by package RobExtremes only.
Simulate random matrices and ensembles and compute their eigenvalue spectra and dispersions.
Make optimal decisions for your personal or household finances. Use tools and methods that are selected carefully to align with academic consensus, bridging the gap between theoretical knowledge and practical application. They help you find your own personalized optimal discretionary spending or optimal asset allocation, and prepare you for retirement or financial independence. The optimal solution to this problems is extremely complex, and we only have a single lifetime to get it right. Fortunately, we now have the user-friendly tools implemented, that integrate life-cycle models with single-period net-worth mean-variance optimization models. Those tools can be used by anyone who wants to see what highly-personalized optimal decisions can look like. For more details see: Idzorek T., Kaplan P. (2024, ISBN:9781952927379), Haghani V., White J. (2023, ISBN:9781119747918).
The Bayesian modelling of relative sea-level data using a comprehensive approach that incorporates various statistical models within a unifying framework. Details regarding each statistical models; linear regression (Ashe et al 2019) <doi:10.1016/j.quascirev.2018.10.032>, change point models (Cahill et al 2015) <doi:10.1088/1748-9326/10/8/084002>, integrated Gaussian process models (Cahill et al 2015) <doi:10.1214/15-AOAS824>, temporal splines (Upton et al 2023) <arXiv:2301.09556>, spatio-temporal splines (Upton et al 2023) <arXiv:2301.09556> and generalised additive models (Upton et al 2023) <arXiv:2301.09556>. This package facilitates data loading, model fitting and result summarisation. Notably, it accommodates the inherent measurement errors found in relative sea-level data across multiple dimensions, allowing for their inclusion in the statistical models.
Automatic coding of open-ended responses to the Cognitive Reflection Test (CRT), a widely used class of tests in cognitive science and psychology that assess the tendency to override an initial intuitive (but incorrect) answer and engage in reflection to reach a correct solution. The package standardizes CRT response coding across datasets in cognitive psychology, decision-making, and related fields. Automated coding reduces manual effort and improves reproducibility by limiting variability from subjective interpretation of open-ended responses. The package supports automatic coding and machine scoring for the original English-language CRT (Frederick, 2005) <doi:10.1257/089533005775196732>, CRT4 and CRT7 (Toplak et al., 2014) <doi:10.1080/13546783.2013.844729>, CRT-long (Primi et al., 2016) <doi:10.1002/bdm.1883>, and CRT-2 (Thomson & Oppenheimer, 2016) <doi:10.1017/s1930297500007622>.
This package implements two-sample tests for paired data with missing values (Fong, Huang, Lemos and McElrath 2018, Biostatics, <doi:10.1093/biostatistics/kxx039>) and modified Wilcoxon-Mann-Whitney two sample location test, also known as the Fligner-Policello test.
Fit and deploy rotation forest models ("Rodriguez, J.J., Kuncheva, L.I., 2006. Rotation forest: A new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1619-1630 <doi:10.1109/TPAMI.2006.211>") for binary classification. Rotation forest is an ensemble method where each base classifier (tree) is fit on the principal components of the variables of random partitions of the feature set.
The Refugee Population Statistics Database published by The Office of The United Nations High Commissioner for Refugees (UNHCR) contains information about forcibly displaced populations spanning more than 70 years of statistical activities. It covers displaced populations such as refugees, asylum-seekers and internally displaced people, including their demographics. Stateless people are also included, most of who have never been displaced. The database also reflects the different types of solutions for displaced populations such as repatriation or resettlement. More information on the data and methodology can be found on the UNHCR Refugee Data Finder <https://www.unhcr.org/refugee-statistics/>.
Plot rpart models. Extends plot.rpart() and text.rpart() in the rpart package.
Supports analysis of spatial data processed with the GeoPAT 2 software <https://github.com/Nowosad/geopat2>. Available features include creation of a grid based on the GeoPAT 2 grid header file and reading a GeoPAT 2 text outputs.
Reads in text from unstructured modern Microsoft Office files (XML based files) such as Word and PowerPoint. This does not read in structured data (from Excel or Access) as there are many other great packages to that do so already.
An implementation of Kaplan, Betancourt, Steorts (2022) <doi:10.1080/00031305.2022.2041482> that creates representative records for use in downstream tasks after entity resolution is performed. Multiple methods for creating the representative records (data sets) are provided.
Enhances the R Optimization Infrastructure (ROI) package by registering the CPLEX commercial solver. It allows for solving mixed integer quadratically constrained programming (MIQPQC) problems as well as all variants/combinations of LP, QP, QCP, IP.