Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Loads Axon Binary Files (both ABF and ABF2') created by Axon Instruments/Molecular Devices software such as pClamp'.
This package provides various features to streamline and enhance the styling of interactive reactable tables with easy-to-use and highly-customizable functions and themes. Apply conditional formatting to cells with data bars, color scales, color tiles, and icon sets. Utilize custom table themes inspired by popular websites such and bootstrap themes. Apply sparkline line & bar charts (note this feature requires the dataui package which can be downloaded from <https://github.com/timelyportfolio/dataui>). Increase the portability and reproducibility of reactable tables by embedding images from the web directly into cells. Save the final table output as a static image or interactive file.
This package provides methods readMat() and writeMat() for reading and writing MAT files. For user with MATLAB v6 or newer installed (either locally or on a remote host), the package also provides methods for controlling MATLAB (trademark) via R and sending and retrieving data between R and MATLAB.
This package provides functions for studying realized genetic relatedness between people. Users will be able to simulate inheritance patterns given pedigree structures, generate SNP marker data given inheritance patterns, and estimate realized relatedness between pairs of individuals using SNP marker data. See Wang (2017) <doi:10.1534/genetics.116.197004>. This work was supported by National Institutes of Health grants R37 GM-046255.
This package creates the radar-boxplot, a plot that was created by the author during his Ph.D. in forest resources. The radar-boxplot is a visualization feature suited for multivariate classification/clustering. It provides an intuitive deep understanding of the data.
Easily interact with the Arduino Iot Cloud API <https://www.arduino.cc/reference/en/iot/api/>, managing devices, things, properties and data.
Scalable implementation of classification and regression forests, as described by Breiman (2001), <DOI:10.1023/A:1010933404324>.
An RStudio addin providing shortcuts for writing in Markdown'. This package provides a series of functions that allow the user to be more efficient when using Markdown'. For example, you can select a word, and put it in bold or in italics, or change the alignment of elements inside you Rmd. The idea is to map all the functionalities from remedy on keyboard shortcuts, so that it provides an interface close to what you can find in any other text editor.
This package provides functions to conduct hypothesis tests and derive confidence intervals for quantiles, linear combinations of quantiles, ratios of dependent linear combinations and differences and ratios of all of the above for comparisons between independent samples. Additionally, quantile-based measures of inequality are also considered.
The rema package implements a permutation-based approach for binary meta-analyses of 2x2 tables, founded on conditional logistic regression, that provides more reliable statistical tests when heterogeneity is observed in rare event data (Zabriskie et al. 2021 <doi:10.1002/sim.9142>). To adjust for the effect of heterogeneity, this method conditions on the sufficient statistic of a proxy for the heterogeneity effect as opposed to estimating the heterogeneity variance. While this results in the model not strictly falling under the random-effects framework, it is akin to a random-effects approach in that it assumes differences in variability due to treatment. Further, this method does not rely on large-sample approximations or continuity corrections for rare event data. This method uses the permutational distribution of the test statistic instead of asymptotic approximations for inference. The number of observed events drives the computation complexity for creating this permutational distribution. Accordingly, for this method to be computationally feasible, it should only be applied to meta-analyses with a relatively low number of observed events. To create this permutational distribution, a network algorithm, based on the work of Mehta et al. (1992) <doi:10.2307/1390598> and Corcoran et al. (2001) <doi:10.1111/j.0006-341x.2001.00941.x>, is employed using C++ and integrated into the package.
An R interface for libeemd (Luukko, Helske, Räsänen, 2016) <doi:10.1007/s00180-015-0603-9>, a C library of highly efficient parallelizable functions for performing the ensemble empirical mode decomposition (EEMD), its complete variant (CEEMDAN), the regular empirical mode decomposition (EMD), and bivariate EMD (BEMD). Due to the possible portability issues CRAN version no longer supports OpenMP, but you can install OpenMP-supported version from GitHub: <https://github.com/helske/Rlibeemd/>.
Robust likelihood cross validation bandwidth for uni- and multi-variate kernel densities. It is robust against fat-tailed distributions and/or outliers. Based on "Robust Likelihood Cross-Validation for Kernel Density Estimation," Wu (2019) <doi:10.1080/07350015.2018.1424633>.
This package provides functions to manipulate rational functions, including basic arithmetic operators, derivatives, and integrals with EXPLICIT forms.
This package performs multinomial goodness-of-fit test on multinomially distributed data using the Randomized phi-divergence test statistics. Details of this kind of statistics can be found at Nikita Puchkin, Vladimir Ulyanov (2023) <doi:10.1214/22-AIHP1299>.
An interface between the GRASS geographical information system ('GIS') and R', based on starting R from within the GRASS GIS environment, or running a free-standing R session in a temporary GRASS location; the package provides facilities for using all GRASS commands from the R command line. The original interface package for GRASS 5 (2000-2010) is described in Bivand (2000) <doi:10.1016/S0098-3004(00)00057-1> and Bivand (2001) <https://www.r-project.org/conferences/DSC-2001/Proceedings/Bivand.pdf>. This was succeeded by spgrass6 for GRASS 6 (2006-2016) and rgrass7 for GRASS 7 (2015-present). The rgrass package modernizes the interface for GRASS 8 while still permitting the use of GRASS 7'.
R wrapper of the libmf library <https://www.csie.ntu.edu.tw/~cjlin/libmf/> for recommender system using matrix factorization. It is typically used to approximate an incomplete matrix using the product of two matrices in a latent space. Other common names for this task include "collaborative filtering", "matrix completion", "matrix recovery", etc. High performance multi-core parallel computing is supported in this package.
Reproducible, programmatic retrieval of datasets from the Roper Center data archive. The Roper Center for Public Opinion Research <https://ropercenter.cornell.edu> maintains the largest archive of public opinion data in existence, but researchers using these datasets are caught in a bind. The Center's terms and conditions bar redistribution of downloaded datasets, but to ensure that one's work can be reproduced, assessed, and built upon by others, one must provide access to the raw data one employed. The `ropercenter` package cuts this knot by providing registered users with programmatic, reproducible access to Roper Center datasets from within R.
Multivariate regression methodologies including classical reduced-rank regression (RRR) studied by Anderson (1951) <doi:10.1214/aoms/1177729580> and Reinsel and Velu (1998) <doi:10.1007/978-1-4757-2853-8>, reduced-rank regression via adaptive nuclear norm penalization proposed by Chen et al. (2013) <doi:10.1093/biomet/ast036> and Mukherjee et al. (2015) <doi:10.1093/biomet/asx080>, robust reduced-rank regression (R4) proposed by She and Chen (2017) <doi:10.1093/biomet/asx032>, generalized/mixed-response reduced-rank regression (mRRR) proposed by Luo et al. (2018) <doi:10.1016/j.jmva.2018.04.011>, row-sparse reduced-rank regression (SRRR) proposed by Chen and Huang (2012) <doi:10.1080/01621459.2012.734178>, reduced-rank regression with a sparse singular value decomposition (RSSVD) proposed by Chen et al. (2012) <doi:10.1111/j.1467-9868.2011.01002.x> and sparse and orthogonal factor regression (SOFAR) proposed by Uematsu et al. (2019) <doi:10.1109/TIT.2019.2909889>.
This package produces tables with the level of replication (number of replicates) and the experimental uncoded values of the quantitative factors to be used for rotatable Central Composite Design (CCD) experimentation and a 2-D contour plot of the corresponding variance of the predicted response according to Mead et al. (2012) <doi:10.1017/CBO9781139020879> design_ccd(), and analyzes CCD data with response surface methodology ccd_analysis(). A rotatable CCD provides values of the variance of the predicted response that are concentrically distributed around the average treatment combination used in the experimentation, which with uniform precision (implied by the use of several replicates at the average treatment combination) improves greatly the search and finding of an optimum response. These properties of a rotatable CCD represent undeniable advantages over the classical factorial design, as discussed by Panneton et al. (1999) <doi:10.13031/2013.13267> and Mead et al. (2012) <doi:10.1017/CBO9781139020879.018> among others.
Reduced-rank regression, diagnostics and graphics.
This package provides a proof of concept implementation of regularized non-negative matrix factorization optimization. A non-negative matrix factorization factors non-negative matrix Y approximately as L R, for non-negative matrices L and R of reduced rank. This package supports such factorizations with weighted objective and regularization penalties. Allowable regularization penalties include L1 and L2 penalties on L and R, as well as non-orthogonality penalties. This package provides multiplicative update algorithms, which are a modification of the algorithm of Lee and Seung (2001) <http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf>, as well as an additive update derived from that multiplicative update. See also Pav (2004) <doi:10.48550/arXiv.2410.22698>.
Linguistic Descriptions of Complex Phenomena (LDCP) is an architecture and methodology that allows us to model complex phenomena, interpreting input data, and generating automatic text reports customized to the user needs (see <doi:10.1016/j.ins.2016.11.002> and <doi:10.1007/s00500-016-2430-5>). The proposed package contains a set of methods that facilitates the development of LDCP systems. It main goal is increasing the visibility and practical use of this research line.
Regression methods to quantify the relation between two measurement methods are provided by this package. The focus is on a Bayesian Deming regressions family. With a Bayesian method the Deming regression can be run in a traditional fashion or can be run in a robust way just decreasing the degree of freedom d.f. of the sampling distribution. With d.f. = 1 an extremely robust Cauchy distribution can be sampled. Moreover, models for dealing with heteroscedastic data are also provided. For reference see G. Pioda (2024) <https://piodag.github.io/bd1/>.
Rossby wave ray paths are traced from a determined source, specified wavenumber, and direction of propagation. "raytracing" also works with a set of experiments changing these parameters, making possible the identification of Rossby wave sources automatically. The theory used here is based on classical studies, such as Hoskins and Karoly (1981) <doi:10.1175/1520-0469(1981)038%3C1179:TSLROA%3E2.0.CO;2>, Karoly (1983) <doi:10.1016/0377-0265(83)90013-1>, Hoskins and Ambrizzi (1993) <doi:10.1175/1520-0469(1993)050%3C1661:RWPOAR%3E2.0.CO;2>, and Yang and Hoskins (1996) <doi:10.1175/1520-0469(1996)053%3C2365:PORWON%3E2.0.CO;2>.