Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Automatic, semi-automatic, and manual functions for generating color maps from images. The idea is to simplify the colors of an image according to a metric that is useful for the user, using deterministic methods whenever possible. Many images will be clustered well using the out-of-the-box functions, but the package also includes a toolbox of functions for making manual adjustments (layer merging/isolation, blurring, fitting to provided color clusters or those from another image, etc). Also includes export methods for other color/pattern analysis packages (pavo, patternize, colordistance).
The RDieHarder package provides an R interface to the DieHarder suite of random number generators and tests that was developed by Robert G. Brown and David Bauer, extending earlier work by George Marsaglia and others. The DieHarder library code is included.
This package provides streamlined functions for summarising and visualising regression models fitted with the rms package, in the preferred format for medical journals. The modelsummary_rms() function produces concise summaries for linear, logistic, and Cox regression models, including automatic handling of models containing restricted cubic spline (RCS) terms. The resulting summary dataframe can be easily converted into publication-ready documents using the flextable and officer packages. The ggrmsMD() function creates clear and customizable plots ('ggplot2 objects) to visualise RCS terms.
This package provides functions to access, search and download spacetime earth observation data via SpatioTemporal Asset Catalog (STAC). This package supports the version 1.0.0 (and older) of the STAC specification (<https://github.com/radiantearth/stac-spec>). For further details see Simoes et al. (2021) <doi:10.1109/IGARSS47720.2021.9553518>.
IUCN Red List (<https://api.iucnredlist.org/>) client. The IUCN Red List is a global list of threatened and endangered species. Functions cover all of the Red List API routes. An API key is required.
The goal of readsdr is to bridge the design capabilities from specialised System Dynamics software with the powerful numerical tools offered by R libraries. The package accomplishes this goal by parsing XMILE files ('Vensim and Stella') models into R objects to construct networks (graph theory); ODE functions for Stan'; and inputs to simulate via deSolve as described in Duggan (2016) <doi:10.1007/978-3-319-34043-2>.
This package provides an interface to the Facebook API.
R Commander plug-in to demonstrate various actuarial and financial risks. It includes valuation of bonds and stocks, portfolio optimization, classical ruin theory, demography and epidemic.
This package provides a collection of functions to estimate Rogers-Castro migration age schedules using Stan'. This model which describes the fundamental relationship between migration and age in the form of a flexible multi-exponential migration model was most notably proposed in Rogers and Castro (1978) <doi:10.1068/a100475>.
This package provides a comprehensive suite of functions to perform and visualise pairwise and network meta-analysis with aggregate binary or continuous missing participant outcome data. The package covers core Bayesian one-stage models implemented in a systematic review with multiple interventions, including fixed-effect and random-effects network meta-analysis, meta-regression, evaluation of the consistency assumption via the node-splitting approach and the unrelated mean effects model (original and revised model proposed by Spineli, (2022) <doi:10.1177/0272989X211068005>), and sensitivity analysis (see Spineli et al., (2021) <doi:10.1186/s12916-021-02195-y>). Missing participant outcome data are addressed in all models of the package (see Spineli, (2019) <doi:10.1186/s12874-019-0731-y>, Spineli et al., (2019) <doi:10.1002/sim.8207>, Spineli, (2019) <doi:10.1016/j.jclinepi.2018.09.002>, and Spineli et al., (2021) <doi:10.1002/jrsm.1478>). The robustness to primary analysis results can also be investigated using a novel intuitive index (see Spineli et al., (2021) <doi:10.1177/0962280220983544>). Methods to evaluate the transitivity assumption using trial dissimilarities and hierarchical clustering are provided (see Spineli, (2024) <doi:10.1186/s12874-024-02436-7>, and Spineli et al., (2025) <doi:10.1002/sim.70068>). A novel index to facilitate interpretation of local inconsistency is also available (see Spineli, (2024) <doi:10.1186/s13643-024-02680-4>) The package also offers a rich, user-friendly visualisation toolkit that aids in appraising and interpreting the results thoroughly and preparing the manuscript for journal submission. The visualisation tools comprise the network plot, forest plots, panel of diagnostic plots, heatmaps on the extent of missing participant outcome data in the network, league heatmaps on estimation and prediction, rankograms, Bland-Altman plot, leverage plot, deviance scatterplot, heatmap of robustness, barplot of Kullback-Leibler divergence, heatmap of comparison dissimilarities and dendrogram of comparison clustering. The package also allows the user to export the results to an Excel file at the working directory.
Annotate text with entities and the relations between them. Annotate areas of interest in images with your labels. Providing htmlwidgets bindings to the recogito <https://github.com/recogito/recogito-js> and annotorious <https://github.com/recogito/annotorious> libraries.
This package implements the hierarchical Bayesian analysis of populations structure (hierBAPS) algorithm of Cheng et al. (2013) <doi:10.1093/molbev/mst028> for clustering DNA sequences from multiple sequence alignments in FASTA format. The implementation includes improved defaults and plotting capabilities and unlike the original MATLAB version removes singleton SNPs by default.
This package provides a machine learning algorithm that merges satellite and ground precipitation data using Random Forest for spatial prediction, residual modeling for bias correction, and quantile mapping for adjustment, ensuring accurate estimates across temporal scales and regions.
Allows wrapping values in success() and failure() types to capture the result of operations, along with any status codes. Risky expressions can be wrapped in as_result() and functions wrapped in result() to catch errors and assign the relevant result types. Monadic functions can be bound together as pipelines or transaction scripts using then_try(), to gracefully handle errors at any step.
Implementation of the Johnson Quantile-Parameterised Distribution in R. The Johnson Quantile-Parameterised Distribution (J-QPD) is a flexible distribution system that is parameterised by a symmetric percentile triplet of quantile values (typically the 10th-50th-90th) along with known support bounds for the distribution. The J-QPD system was developed by Hadlock and Bickel (2017) <doi:10.1287/deca.2016.0343>. This package implements the density, quantile, CDF and random number generator functions.
Exploit controlled vocabularies organized on tematres servers.
Access to some of the C level functions of the xts package. In its current state, the package is mostly a proof-of-concept to support adding useful functions, and does not yet add any of its own.
The LabKey client library for R makes it easy for R users to load live data from a LabKey Server, <https://www.labkey.com/>, into the R environment for analysis, provided users have permissions to read the data. It also enables R users to insert, update, and delete records stored on a LabKey Server, provided they have appropriate permissions to do so.
Response surface designs with neighbour effects are suitable for experimental situations where it is expected that the treatment combination administered to one experimental unit may affect the response on neighboring units as well as the response on the unit to which it is applied (Dalal et al.,2025 <doi: 10.57805/revstat.v23i2.513>). Integrating these effects in the response surface model improves the experiment's precision Verma A., Jaggi S., Varghese, E.,Varghese, C.,Bhowmik, A., Datta, A. and Hemavathi M. (2021)<doi: 10.1080/03610918.2021.1890123>). This package includes sym(), asym1(), asym2(), asym3() and asym4() functions that generates response surface designs which are rotatable under a polynomial model of a given order without interaction term incorporating neighbour effects.
An easy way to get started with Generative Adversarial Nets (GAN) in R. The GAN algorithm was initially described by Goodfellow et al. 2014 <https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf>. A GAN can be used to learn the joint distribution of complex data by comparison. A GAN consists of two neural networks a Generator and a Discriminator, where the two neural networks play an adversarial minimax game. Built-in GAN models make the training of GANs in R possible in one line and make it easy to experiment with different design choices (e.g. different network architectures, value functions, optimizers). The built-in GAN models work with tabular data (e.g. to produce synthetic data) and image data. Methods to post-process the output of GAN models to enhance the quality of samples are available.
Handle JSON-stat format (<https://json-stat.org>) in R. Not all features are supported, especially the extensive metadata features of JSON-stat'.
This package contains utilities for the analysis of Michaelian kinetic data. Beside the classical linearization methods (Lineweaver-Burk, Eadie-Hofstee, Hanes-Woolf and Eisenthal-Cornish-Bowden), features include the ability to carry out weighted regression analysis that, in most cases, substantially improves the estimation of kinetic parameters (Aledo (2021) <doi:10.1002/bmb.21522>). To avoid data transformation and the potential biases introduced by them, the package also offers functions to directly fitting data to the Michaelis-Menten equation, either using ([S], v) or (time, [S]) data. Utilities to simulate substrate progress-curves (making use of the Lambert W function) are also provided. The package is accompanied of vignettes that aim to orientate the user in the choice of the most suitable method to estimate the kinetic parameter of an Michaelian enzyme.
Optimally robust estimation for extreme value distributions using S4 classes and methods (based on packages distr', distrEx', distrMod', RobAStBase', and ROptEst'); the underlying theoretic results can be found in Ruckdeschel and Horbenko, (2013 and 2012), \doi10.1080/02331888.2011.628022 and \doi10.1007/s00184-011-0366-4.
Wrapper for the RSpace Electronic Lab Notebook (<https://www.researchspace.com/>) API. This packages provides convenience functions to browse, search, create, and edit your RSpace documents. In addition, it enables filling RSpace templates from R Markdown/Quarto templates or tabular data (e.g., Excel files). This R package is not developed or endorsed by Research Space'.