Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Rho is used to test the generalization of inter rater reliability (IRR) statistics. Calculating rho starts by generating a large number of simulated, fully-coded data sets: a sizable collection of hypothetical populations, all of which have a kappa value below a given threshold -- which indicates unacceptable agreement. Then kappa is calculated on a sample from each of those sets in the collection to see if it is equal to or higher than the kappa in then real sample. If less than five percent of the distribution of samples from the simulated data sets is greater than actual observed kappa, the null hypothesis is rejected and one can conclude that if the two raters had coded the rest of the data, we would have acceptable agreement (kappa above the threshold).
R package for creating, manipulating and reading RO-Crates. Latest supported version of the specification: <https://w3id.org/ro/crate/1.2/>.
Processing logical operations such as AND/OR/NOT operations dynamically. It also handles nesting in the operations.
This package provides functions to convert an R colour specification to a colour name. The user can select and create different lists of colour names and different colour metrics for the conversion.
The Radiant Design menu includes interfaces for design of experiments, sampling, and sample size calculation. The application extends the functionality in radiant.data'.
Interface to the ZeroMQ lightweight messaging kernel (see <https://zeromq.org/> for more information).
Gather boxscore, play-by-play, and auxiliary data from Major League Volleyball (MLV) <https://provolleyball.com>, League One Volleyball Pro (LOVB Pro) <https://www.lovb.com/pro-league>, and Athletes Unlimited Pro Volleyball <https://auprosports.com/volleyball/> to create a repository of basic and advanced statistics for teams and players.
An implementation of Bayesian model-averaged t-tests that allows users to draw inferences about the presence versus absence of an effect, variance heterogeneity, and potential outliers. The RoBTT package estimates ensembles of models created by combining competing hypotheses and applies Bayesian model averaging using posterior model probabilities. Users can obtain model-averaged posterior distributions and inclusion Bayes factors, accounting for uncertainty in the data-generating process (Maier et al., 2024, <doi:10.3758/s13423-024-02590-5>). The package also provides a truncated likelihood version of the model-averaged t-test, enabling users to exclude potential outliers without introducing bias (Godmann et al., 2024, <doi:10.31234/osf.io/j9f3s>). Users can specify a wide range of informative priors for all parameters of interest. The package offers convenient functions for summary, visualization, and fit diagnostics.
Optimally robust estimation for extreme value distributions using S4 classes and methods (based on packages distr', distrEx', distrMod', RobAStBase', and ROptEst'); the underlying theoretic results can be found in Ruckdeschel and Horbenko, (2013 and 2012), \doi10.1080/02331888.2011.628022 and \doi10.1007/s00184-011-0366-4.
This package provides a common framework for calculating distance matrices.
The Agricultural Production Systems sIMulator ('APSIM') is a widely used to simulate the agricultural systems for multiple crops. This package is designed to create, modify and run apsimx files in the APSIM Next Generation <https://www.apsim.info/>.
This package provides functions for calculating life history metrics using matrix population models ('MPMs'). Described in Jones et al. (2021) <doi:10.1101/2021.04.26.441330>.
Ranking of Alternatives through Functional mapping of criterion sub-intervals into a Single Interval Method is designed to perform multi-criteria decision-making (MCDM), developed by Mališa Žižovic in 2020 (<doi:10.3390/math8061015>). It calculates the final sorted rankings based on a decision matrix where rows represent alternatives and columns represent criteria. The method uses: - A numeric vector of weights for each criterion (the sum of weights must be 1). - A numeric vector of ideal values for each criterion. - A numeric vector of anti-ideal values for each criterion. - Numeric values representing the extent to which the ideal value is preferred over the anti-ideal value, and the extent to which the anti-ideal value is considered worse. The function standardizes the decision matrix, normalizes the data, applies weights, and returns the final sorted rankings.
Graphical visualization of the birds molt to facilitate the creation of molting graph for passerines having 9 (Rmolt(data,9)) or 10 primaries (Rmolt(data,10)), and also only for the 10 first primaries (Rmolt(data,"10_0")).
Fits linear models to repeated ordinal scores using GEE methodology.
Toolbox for chemometrics analysis of bidimensional gas chromatography data. This package import data for common scientific data format (NetCDF) and fold it to 2D chromatogram. Then, it can perform preprocessing and multivariate analysis. In the preprocessing algorithms, baseline correction, smoothing, and peak alignment are available. While in multivariate analysis, multiway principal component analysis is incorporated.
Radiomics image analysis toolbox for 2D and 3D radiological images. RIA supports DICOM, NIfTI, nrrd and npy (numpy array) file formats. RIA calculates first-order, gray level co-occurrence matrix, gray level run length matrix and geometry-based statistics. Almost all calculations are done using vectorized formulas to optimize run speeds. Calculation of several thousands of parameters only takes minutes on a single core of a conventional PC. Detailed methodology has been published: Kolossvary et al. Circ: Cardiovascular Imaging. 2017;10(12):e006843 <doi: 10.1161/CIRCIMAGING.117.006843>.
This package performs the random heteroscedastic nested error regression model described in Kubokawa, Sugasawa, Ghosh and Chaudhuri (2016) <doi:10.5705/ss.202014.0070>.
This package uses either the statconnDCOM server (via the rcom package) or the RDCOMClient to communicate with MS-Word via the COM interface.
Provide an interface for Drama Corpora Project ('DraCor') API: <https://dracor.org/documentation/api>.
Based on data of real user-agent strings, we can set filtering conditions and randomly sample user-agent strings from the user-agent string pool.
This package provides an R interface for using AmCharts Library. Based on htmlwidgets', it provides a global architecture to generate JavaScript source code for charts. Most of classes in the library have their equivalent in R with S4 classes; for those classes, not all properties have been referenced but can easily be added in the constructors. Complex properties (e.g. JavaScript object) can be passed as named list. See examples at <https://datastorm-open.github.io/introduction_ramcharts/> and <https://www.amcharts.com/> for more information about the library. The package includes the free version of AmCharts Library. Its only limitation is a small link to the web site displayed on your charts. If you enjoy this library, do not hesitate to refer to this page <https://www.amcharts.com/online-store/> to purchase a licence, and thus support its creators and get a period of Priority Support. See also <https://www.amcharts.com/about/> for more information about AmCharts company.
Import SGF (Smart Game File) into R.
Estimates the total, between-, and within-cluster Spearman rank correlations for continuous and ordinal clustered data. See Tu et al. (2024) <DOI:10.1002/sim.10326> for details.