Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs genome-wide association studies (GWAS) on individuals that are both related and have repeated measurements. For each Single Nucleotide Polymorphism (SNP), it computes score statistic based p-values for a linear mixed model including random polygenic effects and a random effect for repeated measurements. The computed p-values can be visualized in a Manhattan plot. For more details see Ronnegard et al. (2016) <doi:10.1111/2041-210X.12535> and for more examples see <https://github.com/larsronn/RepeatABEL_Tutorials>.
Convenience functions to make some common tasks with right-to-left string printing easier, more convenient and with no need to remember long Unicode characters. Specifically helpful for right-to-left languages such as Arabic, Persian and Hebrew.
Regression methods to quantify the relation between two measurement methods are provided by this package. The focus is on a Bayesian Deming regressions family. With a Bayesian method the Deming regression can be run in a traditional fashion or can be run in a robust way just decreasing the degree of freedom d.f. of the sampling distribution. With d.f. = 1 an extremely robust Cauchy distribution can be sampled. Moreover, models for dealing with heteroscedastic data are also provided. For reference see G. Pioda (2024) <https://piodag.github.io/bd1/>.
Show physics, math and engineering students how an ODE solver is made and how effective R classes can be for the construction of the equations that describe natural phenomena. Inspiration for this work comes from the book on "Computer Simulations in Physics" by Harvey Gould, Jan Tobochnik, and Wolfgang Christian. Book link: <http://www.compadre.org/osp/items/detail.cfm?ID=7375>.
Interface to the Dryad "Solr" API, their "OAI-PMH" service, and fetch datasets. Dryad (<https://datadryad.org/>) is a curated host of data underlying scientific publications.
This package provides a tool to read and manipulate data generated from RiverWare'(TM) <https://www.riverware.org/> simulations. RiverWare and RiverSMART generate data in "rdf", "csv", and "nc" format. This package provides an interface to read, aggregate, and summarize data from one or more simulations in a dplyr pipeline.
The goal of rFIA is to increase the accessibility and use of the United States Forest Services (USFS) Forest Inventory and Analysis (FIA) Database by providing a user-friendly, open source toolkit to easily query and analyze FIA Data. Designed to accommodate a wide range of potential user objectives, rFIA simplifies the estimation of forest variables from the FIA Database and allows all R users (experts and newcomers alike) to unlock the flexibility inherent to the Enhanced FIA design. Specifically, rFIA improves accessibility to the spatial-temporal estimation capacity of the FIA Database by producing space-time indexed summaries of forest variables within user-defined population boundaries. Direct integration with other popular R packages (e.g., dplyr', tidyr', and sf') facilitates efficient space-time query and data summary, and supports common data representations and API design. The package implements design-based estimation procedures outlined by Bechtold & Patterson (2005) <doi:10.2737/SRS-GTR-80>, and has been validated against estimates and sampling errors produced by FIA EVALIDator'. Current development is focused on the implementation of spatially-enabled model-assisted and model-based estimators to improve population, change, and ratio estimates.
Set of classes and methods to read data and metadata documents exchanged through the Statistical Data and Metadata Exchange (SDMX) framework, currently focusing on the SDMX XML standard format (SDMX-ML).
An R Commander plug-in providing an integrated solution to perform a series of text mining tasks such as importing and cleaning a corpus, and analyses like terms and documents counts, vocabulary tables, terms co-occurrences and documents similarity measures, time series analysis, correspondence analysis and hierarchical clustering. Corpora can be imported from spreadsheet-like files, directories of raw text files, as well as from Dow Jones Factiva', LexisNexis', Europresse and Alceste files.
This package implements popular methods for matching in time-varying observational studies. Matching is difficult in this scenario because participants can be treated at different times which may have an influence on the outcomes. The core methods include: "Balanced Risk Set Matching" from Li, Propert, and Rosenbaum (2011) <doi:10.1198/016214501753208573> and "Propensity Score Matching with Time-Dependent Covariates" from Lu (2005) <doi:10.1111/j.1541-0420.2005.00356.x>. Some functions use the Gurobi optimization back-end to improve the optimization problem speed; the gurobi R package and associated software can be downloaded from <https://www.gurobi.com> after obtaining a license.
Yandex Translate (https://translate.yandex.com/) is a statistical machine translation system. The system translates separate words, complete texts, and webpages. This package can be used to detect language from text and to translate it to supported target language. For more info: https://tech.yandex.com/translate/doc/dg/concepts/About-docpage/ .
Native R interface to TMB (Template Model Builder) so models can be written entirely in R rather than C++'. Automatic differentiation, to any order, is available for a rich subset of R features, including linear algebra for dense and sparse matrices, complex arithmetic, Fast Fourier Transform, probability distributions and special functions. RTMB provides easy access to model fitting and validation following the principles of Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016) <DOI:10.18637/jss.v070.i05> and Thygesen, U.H., Albertsen, C.M., Berg, C.W. et al. (2017) <DOI:10.1007/s10651-017-0372-4>.
This package provides functions to perform propensity score matching on rolling entry interventions for which a suitable "entry" date is not observed for nonparticipants. For more details, please reference Witman et al. (2018) <doi:10.1111/1475-6773.13086>.
This package provides tools to fit and simulate realizations from relational event models.
This package provides a supportive collection of functions for gathering and plotting treatment ranking metrics after network meta-analysis.
REDCap Data Management - REDCap (Research Electronic Data CAPture; <https://projectredcap.org>) is a web application developed at Vanderbilt University, designed for creating and managing online surveys and databases and the REDCap API is an interface that allows external applications to connect to REDCap remotely, and is used to programmatically retrieve or modify project data or settings within REDCap, such as importing or exporting data. REDCapDM is an R package that allows users to manage data exported directly from REDCap or using an API connection. This package includes several functions designed for pre-processing data, generating reports of queries such as outliers or missing values, and following up on previously identified queries.
This package provides a robust procedure is implemented to estimate means and covariance matrix of multiple variables with missing data using Huber weight and then to estimate a structural equation model.
Sundry discrete probability distributions and helper functions.
We utilize approximate Bayesian machinery to fit two-level conjugate hierarchical models on overdispersed Gaussian, Poisson, and Binomial data and evaluates whether the resulting approximate Bayesian interval estimates for random effects meet the nominal confidence levels via frequency coverage evaluation. The data that Rgbp assumes comprise observed sufficient statistic for each random effect, such as an average or a proportion of each group, without population-level data. The approximate Bayesian tool equipped with the adjustment for density maximization produces approximate point and interval estimates for model parameters including second-level variance component, regression coefficients, and random effect. For the Binomial data, the package provides an option to produce posterior samples of all the model parameters via the acceptance-rejection method. The package provides a quick way to evaluate coverage rates of the resultant Bayesian interval estimates for random effects via a parametric bootstrapping, which we call frequency method checking.
The Brazilian Central Bank API delivers many datasets which regard economic activity, regional economy, international economy, public finances, credit indicators and many more. For more information please see <http://dadosabertos.bcb.gov.br/>. These datasets can be accessed through rbcb functions and can be obtained in different data structures common to R ('tibble', data.frame', xts', ...).
It is a package that provides alternative approach for finding optimum parameters of ridge regression. This package focuses on finding the ridge parameter value k which makes the variance inflation factors closest to 1, while keeping them above 1 as addressed by Michael Kutner, Christopher Nachtsheim, John Neter, William Li (2004, ISBN:978-0073108742). Moreover, the package offers end-to-end functionality to find optimum k value and presents the detailed ridge regression results. Finally it shows three sets of graphs consisting k versus variance inflation factors, regression coefficients and standard errors of them.
This package provides a function for multivariate outlier detection named Modified Stahel-Donoho (MSD) estimators is contained. The function is for elliptically distributed datasets and recognizes outliers based on Mahalanobis distance. The function is called the single core version in Wada & Tsubaki (2013) <doi:10.1109/CLOUDCOM-ASIA.2013.86> and evaluated with other methods in Wada, Kawano & Tsubaki (2020) <doi:10.17713/ajs.v49i2.872>.
Scalable implementation of classification and regression forests, as described by Breiman (2001), <DOI:10.1023/A:1010933404324>.
Implementation of the Robust Gauss-Newton (RGN) algorithm, designed for solving optimization problems with a sum of least squares objective function. For algorithm details please refer to Qin et. al. (2018) <doi:10.1029/2017WR022488>.