Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Download the latest data from the Australian Prudential Regulation Authority <https://www.apra.gov.au/> and import it into R as a tidy data frame.
This package contains a function to randomize subjects, patients in groups of sequences (treatment sequences). If a blocksize is given, the randomization will be done within blocks. The randomization may be controlled by a Wald-Wolfowitz runs test. Functions to obtain the p-value of that test are included. The package is mainly intended for randomization of bioequivalence studies but may be used also for other clinical crossover studies. Contains two helper functions sequences() and williams() to get the sequences of commonly used designs in BE studies.
S3 and S4 functions are implemented for spatial multi-site stochastic generation of daily time series of temperature and precipitation. These tools make use of Vector AutoRegressive models (VARs). The weather generator model is then saved as an object and is calibrated by daily instrumental "Gaussianized" time series through the vars package tools. Once obtained this model, it can it can be used for weather generations and be adapted to work with several climatic monthly time series.
This package provides a robust procedure is implemented to estimate means and covariance matrix of multiple variables with missing data using Huber weight and then to estimate a structural equation model.
Takes matched and unmatched data and calculates Rosenbaum bounds for the treatment effect. Calculates bounds for binary outcome data, Hodges-Lehmann point estimates, Wilcoxon signed-rank test for matched data and matched IV estimators, Wilcoxon sum rank test, and for data with multiple matched controls. The sensitivity analysis methods in this package are documented in Rosenbaum (2002) Observational Studies, <doi:10.1007/978-1-4757-3692-2>, Springer-Verlag.
Non-inferiority test and diagnostic test are very important in clinical trails. This package is to get a p value from the non-inferiority test for ROC curves from diagnostic test.
New Markov chain Monte Carlo (MCMC) samplers new to be thoroughly tested and their performance accurately assessed. This requires densities that offer challenging properties to the novel sampling algorithms. One such popular problem is the Rosenbrock function. However, while its shape lends itself well to a benchmark problem, no codified multivariate expansion of the density exists. We have developed an extension to this class of distributions and supplied densities and direct sampler functions to assess the performance of novel MCMC algorithms. The functions are introduced in "An n-dimensional Rosenbrock Distribution for MCMC Testing" by Pagani, Wiegand and Nadarajah (2019) <arXiv:1903.09556>.
Fit and simulate any kind of physiologically-based kinetic ('PBK') models whatever the number of compartments. Moreover, it allows to account for any link between pairs of compartments, as well as any link of each of the compartments with the external medium. Such generic PBK models have today applications in pharmacology (PBPK models) to describe drug effects, in toxicology and ecotoxicology (PBTK models) to describe chemical substance effects. In case of exposure to a parent compound (drug or chemical) the rPBK package allows to consider metabolites, whatever their number and their phase (I, II, ...). Last but not least, package rPBK can also be used for dynamic flux balance analysis (dFBA) to deal with metabolic networks. See also Charles et al. (2022) <doi:10.1101/2022.04.29.490045>.
Real Twig is a method to correct branch overestimation in quantitative structure models. Overestimated cylinders are correctly tapered using measured twig diameters of corresponding tree species. Supported quantitative structure modeling software includes TreeQSM', SimpleForest', Treegraph', and aRchi'. Also included is a novel database of twig diameters and tools for fractal analysis of point clouds.
Interface to the flsgen neutral landscape generator <https://github.com/dimitri-justeau/flsgen>. It allows to - Generate fractal terrain; - Generate landscape structures satisfying user targets over landscape indices; - Generate landscape raster from landscape structures.
This package provides functions for simulating Markov chains using the Barker proposal to compute Markov chain Monte Carlo (MCMC) estimates of expectations with respect to a target distribution on a real-valued vector space. The Barker proposal, described in Livingstone and Zanella (2022) <doi:10.1111/rssb.12482>, is a gradient-based MCMC algorithm inspired by the Barker accept-reject rule. It combines the robustness of simpler MCMC schemes, such as random-walk Metropolis, with the efficiency of gradient-based methods, such as the Metropolis adjusted Langevin algorithm. The key function provided by the package is sample_chain(), which allows sampling a Markov chain with a specified target distribution as its stationary distribution. The chain is sampled by generating proposals and accepting or rejecting them using a Metropolis-Hasting acceptance rule. During an initial warm-up stage, the parameters of the proposal distribution can be adapted, with adapters available to both: tune the scale of the proposals by coercing the average acceptance rate to a target value; tune the shape of the proposals to match covariance estimates under the target distribution. As well as the default Barker proposal, the package also provides implementations of alternative proposal distributions, such as (Gaussian) random walk and Langevin proposals. Optionally, if BridgeStan's R interface <https://roualdes.us/bridgestan/latest/languages/r.html>, available on GitHub <https://github.com/roualdes/bridgestan>, is installed, then BridgeStan can be used to specify the target distribution to sample from.
This package provides a flexible alternative to the built-in rank() function called smartrank(). Optionally rank categorical variables by frequency (instead of in alphabetical order), and control whether ranking is based on descending/ascending order. smartrank() is suitable for both numerical and categorical data.
Using this package, it is possible to call a BUGS model, summarize inferences and convergence in a table and graph, and save the simulations in arrays for easy access in R.
Partitions the phenotypic variance of a plastic trait, studied through its reaction norm. The variance partition distinguishes between the variance arising from the average shape of the reaction norms (V_Plas) and the (additive) genetic variance . The latter is itself separated into an environment-blind component (V_G/V_A) and the component arising from plasticity (V_GxE/V_AxE). The package also provides a way to further partition V_Plas into aspects (slope/curvature) of the shape of the average reaction norm (pi-decomposition) and partition V_Add (gamma-decomposition) and V_AxE (iota-decomposition) into the impact of genetic variation in the reaction norm parameters. Reference: de Villemereuil & Chevin (2025) <doi:10.32942/X2NC8B>.
This package provides a tool for multiply imputing missing data using MIDAS', a deep learning method based on denoising autoencoder neural networks (see Lall and Robinson, 2022; <doi:10.1017/pan.2020.49>). This algorithm offers significant accuracy and efficiency advantages over other multiple imputation strategies, particularly when applied to large datasets with complex features. Alongside interfacing with Python to run the core algorithm, this package contains functions for processing data before and after model training, running imputation model diagnostics, generating multiple completed datasets, and estimating regression models on these datasets. For more information see Lall and Robinson (2023) <doi:10.18637/jss.v107.i09>.
Convex Least Squares Programming (CLSP) is a two-step estimator for solving underdetermined, ill-posed, or structurally constrained least-squares problems. It combines pseudoinverse-based estimation with convex-programming correction methods inspired by Lasso, Ridge, and Elastic Net to ensure numerical stability, constraint enforcement, and interpretability. The package also provides numerical stability analysis and CLSP-specific diagnostics, including partial R^2, normalized RMSE (NRMSE), Monte Carlo t-tests for mean NRMSE, and condition-number-based confidence bands.
We provide a toolbox to fit univariate and multivariate linear mixed models via data transforming augmentation. Users can also fit these models via typical data augmentation for a comparison. It returns either maximum likelihood estimates of unknown model parameters (hyper-parameters) via an EM algorithm or posterior samples of those parameters via MCMC. Also see Tak et al. (2019) <doi:10.1080/10618600.2019.1704295>.
Retime speech signals with a native Waveform Similarity Overlap-Add (WSOLA) implementation translated from the TSM toolbox by Driedger & Müller (2014) <https://www.audiolabs-erlangen.de/content/resources/MIR/TSMtoolbox/2014_DriedgerMueller_TSM-Toolbox_DAFX.pdf>. Design retimings and pitch (f0) transformations with tidy data and apply them via Praat interface. Produce spectrograms, spectra, and amplitude envelopes. Includes implementation of vocalic speech envelope analysis (fft_spectrum) technique and example data (mm1) from Tilsen, S., & Johnson, K. (2008) <doi:10.1121/1.2947626>.
This package creates interactive analytic graphs with R'. It joins the data analysis power of R and the visualization libraries of JavaScript in one package. The package provides interactive networks, timelines, barplots, image galleries and evolving networks. Graphs are represented as D3.js graphs embedded in a web page ready for its interactive analysis and exploration.
Multi-block data analysis concerns the analysis of several sets of variables (blocks) observed on the same group of individuals. The main aims of the RGCCA package are: to study the relationships between blocks and to identify subsets of variables of each block which are active in their relationships with the other blocks. This package allows to (i) run R/SGCCA and related methods, (ii) help the user to find out the optimal parameters for R/SGCCA such as regularization parameters (tau or sparsity), (iii) evaluate the stability of the RGCCA results and their significance, (iv) build predictive models from the R/SGCCA. (v) Generic print() and plot() functions apply to all these functionalities.
BaseX <https://basex.org> is a XML database engine and a compliant XQuery 3.1 processor with full support of W3C Update Facility'. This package is a full client-implementation of the client/server protocol for BaseX and provides functionalities to create, manipulate and query on XML-data.
This package provides access to Rangeland Analysis Platform (RAP) products <https://rangelands.app/products> for arbitrary extents via GDAL virtual file system.
Algorithms for solving a self-calibrated l1-regularized quadratic programming problem without parameter tuning. The algorithm, called DECODE, can handle high-dimensional data without cross-validation. It is found useful in high dimensional portfolio selection (see Pun (2018) <https://ssrn.com/abstract=3179569>) and large precision matrix estimation and sparse linear discriminant analysis (see Pun and Hadimaja (2019) <https://ssrn.com/abstract=3422590>).
Captures errors encountered when running run_examples()', and processes and archives them. The function run_examples() within the devtools package allows batch execution of all of the examples within a given package. This is much more convenient than testing each example manually. However, a major inconvenience is that if an error is encountered, the program stops and does not complete testing the remaining examples. Also, there is not a systematic record of the results, namely which package functions had no examples, which had examples that failed, and which had examples that succeeded. The current package provides the missing functionality.