Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fit Bayesian models using brms'/'Stan with parsnip'/'tidymodels via bayesian <doi:10.5281/zenodo.4426836>. tidymodels is a collection of packages for machine learning; see Kuhn and Wickham (2020) <https://www.tidymodels.org>). The technical details of brms and Stan are described in Bürkner (2017) <doi:10.18637/jss.v080.i01>, Bürkner (2018) <doi:10.32614/RJ-2018-017>, and Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>.
This package provides a method to filter correlation and covariance matrices by averaging bootstrapped filtered hierarchical clustering and boosting. See Ch. Bongiorno and D. Challet, Covariance matrix filtering with bootstrapped hierarchies (2020) <arXiv:2003.05807> and Ch. Bongiorno and D. Challet, Reactive Global Minimum Variance Portfolios with k-BAHC covariance cleaning (2020) <arXiv:2005.08703>.
This package provides a Bayesian latent space model for complex networks, either weighted or unweighted. Given an observed input graph, the estimates for the latent coordinates of the nodes are obtained through a Bayesian MCMC algorithm. The overall likelihood of the graph depends on a fundamental probability equation, which is defined so that ties are more likely to exist between nodes whose latent space coordinates are close. The package is mainly based on the model by Hoff, Raftery and Handcock (2002) <doi:10.1198/016214502388618906> and contains some extra features (e.g., removal of the Procrustean step, weights implemented as coefficients of the latent distances, 3D plots). The original code related to the above model was retrieved from <https://www.stat.washington.edu/people/pdhoff/Code/hoff_raftery_handcock_2002_jasa/>. Users can inspect the MCMC simulation, create and customize insightful graphical representations or apply clustering techniques.
Bond Pricing and Fixed-Income Valuation of Selected Securities included here serve as a quick reference of Quantitative Methods for undergraduate courses on Fixed-Income and CFA Level I Readings on Fixed-Income Valuation, Risk and Return. CFA Institute ("CFA Program Curriculum 2020 Level I Volumes 1-6. (Vol. 5, pp. 107-151, pp. 237-299)", 2019, ISBN: 9781119593577). Barbara S. Petitt ("Fixed Income Analysis", 2019, ISBN: 9781119628132). Frank J. Fabozzi ("Handbook of Finance: Financial Markets and Instruments", 2008, ISBN: 9780470078143). Frank J. Fabozzi ("Fixed Income Analysis", 2007, ISBN: 9780470052211).
This package provides comprehensive tools for blinded sample size re-estimation (BSSR) in two-arm clinical trials with binary endpoints. Unlike traditional fixed-sample designs, BSSR allows adaptive sample size adjustments during trials while maintaining statistical integrity and study blinding. Implements five exact statistical tests: Pearson chi-squared, Fisher exact, Fisher mid-p, Z-pooled exact unconditional, and Boschloo exact unconditional tests. Supports restricted, unrestricted, and weighted BSSR approaches with exact Type I error control. Statistical methods based on Mehrotra et al. (2003) <doi:10.1111/1541-0420.00051> and Kieser (2020) <doi:10.1007/978-3-030-49528-2_21>.
This package implements methods for building and analyzing models based on panel data as described in the paper by Moral-Benito (2013, <doi:10.1080/07350015.2013.818003>). The package provides functions to estimate dynamic panel data models and analyze the results of the estimation.
Nuclear magnetic resonance (NMR) is a highly versatile analytical technique for studying molecular configuration, conformation, and dynamics, especially those of biomacromolecules such as proteins. Biological Magnetic Resonance Data Bank ('BMRB') is a repository for Data from NMR Spectroscopy on Proteins, Peptides, Nucleic Acids, and other Biomolecules. Currently, BMRB offers an R package RBMRB to fetch data, however, it doesn't easily offer individual data file downloading and storing in a local directory. When using RBMRB', the data will stored as an R object, which fundamentally hinders the NMR researches to access the rich information from raw data, for example, the metadata. Here, BMRBr File Downloader ('BMRBr') offers a more fundamental, low level downloader, which will download original deposited .str format file. This type of file contains information such as entry title, authors, citation, protein sequences, and so on. Many factors affect NMR experiment outputs, such as temperature, resonance sensitivity and etc., approximately 40% of the entries in the BMRB have chemical shift accuracy problems [1,2] Unfortunately, current reference correction methods are heavily dependent on the availability of assigned protein chemical shifts or protein structure. This is my current research project is going to solve, which will be included in the future release of the package. The current version of the package is sufficient and robust enough for downloading individual BMRB data file from the BMRB database <http://www.bmrb.wisc.edu>. The functionalities of this package includes but not limited: * To simplifies NMR researches by combine data downloading and results analysis together. * To allows NMR data reaches a broader audience that could utilize more than just chemical shifts but also metadata. * To offer reference corrected data for entries without assignment or structure information (future release). Reference: [1] E.L. Ulrich, H. Akutsu, J.F. Doreleijers, Y. Harano, Y.E. Ioannidis, J. Lin, et al., BioMagResBank, Nucl. Acids Res. 36 (2008) D402â 8. <doi:10.1093/nar/gkm957>. [2] L. Wang, H.R. Eghbalnia, A. Bahrami, J.L. Markley, Linear analysis of carbon-13 chemical shift differences and its application to the detection and correction of errors in referencing and spin system identifications, J. Biomol. NMR. 32 (2005) 13â 22. <doi:10.1007/s10858-005-1717-0>.
Data sets for book "Basic Statistics and Data Analysis" by Larry J. Kitchens.
This package provides methods for Bayesian parameter estimation and forecasting in epidemiological models. Functions enable model fitting using Bayesian methods and generate forecasts with uncertainty quantification. Implements approaches described in <doi:10.48550/arXiv.2411.05371> and <doi:10.1002/sim.9164>.
Implementation of the BRIk, FABRIk and FDEBRIk algorithms to initialise k-means. These methods are intended for the clustering of multivariate and functional data, respectively. They make use of the Modified Band Depth and bootstrap to identify appropriate initial seeds for k-means, which are proven to be better options than many techniques in the literature. Torrente and Romo (2021) <doi:10.1007/s00357-020-09372-3> It makes use of the functions kma and kma.similarity, from the archived package fdakma, by Alice Parodi et al.
This package contains functions for estimating above-ground biomass/carbon and its uncertainty in tropical forests. These functions allow to (1) retrieve and correct taxonomy, (2) estimate wood density and its uncertainty, (3) build height-diameter models, (4) manage tree and plot coordinates, (5) estimate above-ground biomass/carbon at stand level with associated uncertainty. To cite â BIOMASSâ , please use citation(â BIOMASSâ ). For more information, see Réjou-Méchain et al. (2017) <doi:10.1111/2041-210X.12753>.
This package provides tools for downloading historical financial data from the www.belex.rs.
Bayesian power/type I error calculation and model fitting using the power prior and the normalized power prior for generalized linear models. Detailed examples of applying the package are available at <doi:10.32614/RJ-2023-016>. Models for time-to-event outcomes are implemented in the R package BayesPPDSurv'. The Bayesian clinical trial design methodology is described in Chen et al. (2011) <doi:10.1111/j.1541-0420.2011.01561.x>, and Psioda and Ibrahim (2019) <doi:10.1093/biostatistics/kxy009>. The normalized power prior is described in Duan et al. (2006) <doi:10.1002/env.752> and Ibrahim et al. (2015) <doi:10.1002/sim.6728>.
Bootstrap resampling methods have been widely studied in the context of survey data. This package implements various bootstrap resampling techniques tailored for survey data, with a focus on stratified simple random sampling and stratified two-stage cluster sampling. It provides tools for precise and consistent bootstrap variance estimation for population totals, means, and quartiles. Additionally, it enables easy generation of bootstrap samples for in-depth analysis.
This package provides a set of Boolean operators which accept integers of any size, in any base from 2 to 36, including 2's complement format, and perform actions like "AND," "OR", "NOT", "SHIFTR/L" etc. The output can be in any base specified. A direct base to base converter is included.
Estimation of hierarchical Bayesian vector autoregressive models following Kuschnig & Vashold (2021) <doi:10.18637/jss.v100.i14>. Implements hierarchical prior selection for conjugate priors in the fashion of Giannone, Lenza & Primiceri (2015) <doi:10.1162/REST_a_00483>. Functions to compute and identify impulse responses, calculate forecasts, forecast error variance decompositions and scenarios are available. Several methods to print, plot and summarise results facilitate analysis.
Sample dataframes by group, in the form of a block bootstrap'. Entire groups are returned allowing for a single observation to span multiple rows of the dataframe.
US baby names provided by the SSA. This package contains all names used for at least 5 children of either sex.
Tests the parallel regression assumption wit the brant test by Brant (1990) <doi: 10.2307/2532457> for ordinal logit models generated with the function polr() from the package MASS'.
Running and comparing meta-analyses of data with hierarchical Bayesian models in Stan, including convenience functions for formatting data, plotting and pooling measures specific to meta-analysis. This implements many models from Meager (2019) <doi:10.1257/app.20170299>.
This package provides functionality for determining the sample size of replication studies using Bayesian design approaches in the normal-normal hierarchical model (Pawel et al., 2022) <doi:10.48550/arXiv.2211.02552>.
For studying recurrent disease and death with competing risks, comparisons based on the well-known cumulative incidence function can be confounded by different prevalence rates of the competing events. Alternatively, comparisons of the conditional distribution of the survival time given the failure event type are more relevant for investigating the prognosis of different patterns of recurrence disease. This package implements a nonparametric estimator for the conditional cumulative incidence function and a nonparametric conditional bivariate cumulative incidence function for the bivariate gap times proposed in Huang et al. (2016) <doi:10.1111/biom.12494>.
Facilitates retrieval, transformation and analysis of the data from the Barcode of Life Data Systems (BOLD) database <https://boldsystems.org/>. This package allows both public and private user data to be easily downloaded into the R environment using a variety of inputs such as: IDs (processid, sampleid), BINs, dataset codes, project codes, taxonomy, geography etc. It provides frictionless data conversion into formats compatible with other R-packages and third-party tools, as well as functions for sequence alignment & clustering, biodiversity analysis and spatial mapping.
Causal inference for a binary treatment and continuous outcome using Bayesian Causal Forests. See Hahn, Murray and Carvalho (2020) <doi:10.1214/19-BA1195> for additional information. This implementation relies on code originally accompanying Pratola et. al. (2013) <arXiv:1309.1906>.