Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes Bayesian posterior distributions of predictions, marginal effects, and differences of marginal effects for various generalized linear models. Importantly, the posteriors are on the mean (response) scale, allowing for more natural interpretation than summaries on the link scale. Also, predictions and marginal effects of the count probabilities for Poisson and negative binomial models can be computed.
Perform mediation analysis in the presence of high-dimensional mediators based on the potential outcome framework. Bayesian Mediation Analysis (BAMA), developed by Song et al (2019) <doi:10.1111/biom.13189> and Song et al (2020) <doi:10.48550/arXiv.2009.11409>, relies on two Bayesian sparse linear mixed models to simultaneously analyze a relatively large number of mediators for a continuous exposure and outcome assuming a small number of mediators are truly active. This sparsity assumption also allows the extension of univariate mediator analysis by casting the identification of active mediators as a variable selection problem and applying Bayesian methods with continuous shrinkage priors on the effects.
Intended to facilitate acoustic analysis of (animal) sound propagation experiments, which typically aim to quantify changes in signal structure when transmitted in a given habitat by broadcasting and re-recording animal sounds at increasing distances. The package offers a workflow with functions to prepare the data set for analysis as well as to calculate and visualize several degradation metrics, including blur ratio, signal-to-noise ratio, excess attenuation and envelope correlation among others (Dabelsteen et al 1993 <doi:10.1121/1.406682>).
Computes uniform bounds on the distance between the cumulative distribution function of a standardized sum of random variables and its first-order Edgeworth expansion, following the article Derumigny, Girard, Guyonvarch (2023) <doi:10.1007/s13171-023-00320-y>.
Single linkage clustering and connected component analyses are often performed on biological images. Bioi provides a set of functions for performing these tasks. This functionality is implemented in several key functions that can extend to from 1 to many dimensions. The single linkage clustering method implemented here can be used on n-dimensional data sets, while connected component analyses are limited to 3 or fewer dimensions.
Network meta-analyses using Bayesian framework following Dias et al. (2013) <DOI:10.1177/0272989X12458724>. Based on the data input, creates prior, model file, and initial values needed to run models in rjags'. Able to handle binomial, normal and multinomial arm-level data. Can handle multi-arm trials and includes methods to incorporate covariate and baseline risk effects. Includes standard diagnostics and visualization tools to evaluate the results.
This package provides a suite of open-source R functions designed to produce standard metrics for forest management and ecology from forest inventory data. The overarching goal is to minimize potential inconsistencies introduced by the algorithms used to compute and summarize core forest metrics. Learn more about the purpose of the package and the specific algorithms used in the package at <https://github.com/kearutherford/BerkeleyForestsAnalytics>.
Fits a discharge rating curve based on the power-law and the generalized power-law from data on paired stage and discharge measurements in a given river using a Bayesian hierarchical model as described in Hrafnkelsson et al. (2020) <arXiv:2010.04769>.
Carries out Bland Altman analyses (also known as a Tukey mean-difference plot) as described by JM Bland and DG Altman in 1986 <doi:10.1016/S0140-6736(86)90837-8>. This package was created in 2015 as existing Bland-Altman analysis functions did not calculate confidence intervals. This package was created to rectify this, and create reproducible plots. This package is also available as a module for the jamovi statistical spreadsheet (see <https://www.jamovi.org> for more information).
This package performs general Bayesian estimation method of linearâ bilinear models for genotype à environment interaction. The method is explained in Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) (<doi:10.1007/s13253-011-0063-9>).
This package provides an Markov-Chain-Monte-Carlo algorithm for Bayesian t-tests on the effect size. The underlying Gibbs sampler is based on a two-component Gaussian mixture and approximates the posterior distributions of the effect size, the difference of means and difference of standard deviations. A posterior analysis of the effect size via the region of practical equivalence is provided, too. For more details about the Gibbs sampler see Kelter (2019) <arXiv:1906.07524>.
This package creates bubbles within shiny and rmarkdown backgrounds using the bubbly-bg JavaScript library.
This package provides a Bayesian, global planktic foraminifera core top calibration to modern sea-surface temperatures. Includes four calibration models, considering species-specific calibration parameters and seasonality.
Nonparametric detection of nonuniformity and dependence with Binary Expansion Testing (BET). See Kai Zhang (2019) BET on Independence, Journal of the American Statistical Association, 114:528, 1620-1637, <DOI:10.1080/01621459.2018.1537921>, Kai Zhang, Wan Zhang, Zhigen Zhao, Wen Zhou. (2023). BEAUTY Powered BEAST, <doi:10.48550/arXiv.2103.00674> and Wan Zhang, Zhigen Zhao, Michael Baiocchi, Yao Li, Kai Zhang. (2023) SorBET: A Fast and Powerful Algorithm to Test Dependence of Variables, Techinical report.
This package provides functions are pre-configured to utilize Bootstrap 5 classes and HTML structures to create Bootstrap-styled HTML quickly and easily. Includes functions for creating common Bootstrap elements such as containers, rows, cols, navbars, etc. Intended to be used with the html5 package. Learn more at <https://getbootstrap.com/>.
This package provides users with its associated functions for pedagogical purposes in visually learning Bayesian networks and Markov chain Monte Carlo (MCMC) computations. It enables users to: a) Create and examine the (starting) graphical structure of Bayesian networks; b) Create random Bayesian networks using a dataset with customized constraints; c) Generate Stan code for structures of Bayesian networks for sampling the data and learning parameters; d) Plot the network graphs; e) Perform Markov chain Monte Carlo computations and produce graphs for posteriors checks. The package refers to one reference item, which describes the methods and algorithms: Vuong, Quan-Hoang and La, Viet-Phuong (2019) <doi:10.31219/osf.io/w5dx6> The bayesvl R package. Open Science Framework (May 18).
Calculate the bark beetle phenology based on raster data or point-related data. There are multiple models implemented for two bark beetle species. The models can be customized and their submodels (onset of infestation, beetle development, diapause initiation, mortality) can be combined. The following models are available in the package: PHENIPS-Clim (first-time release in this package), PHENIPS (Baier et al. 2007) <doi:10.1016/j.foreco.2007.05.020>, RITY (Ogris et al. 2019) <doi:10.1016/j.ecolmodel.2019.108775>, CHAPY (Ogris et al. 2020) <doi:10.1016/j.ecolmodel.2020.109137>, BSO (Jakoby et al. 2019) <doi:10.1111/gcb.14766>, Lange et al. (2008) <doi:10.1007/978-3-540-85081-6_32>, Jönsson et al. (2011) <doi:10.1007/s10584-011-0038-4>. The package may be expanded by models for other bark beetle species in the future.
This package provides a fast, lightweight, and vectorized base 64 engine to encode and decode character and raw vectors as well as files stored on disk. Common base 64 alphabets are supported out of the box including the standard, URL-safe, bcrypt, crypt, BinHex', and IMAP-modified UTF-7 alphabets. Custom engines can be created to support unique base 64 encoding and decoding needs.
Maximum likelihood estimation of copula-based zero-inflated (and non-inflated) Poisson and negative binomial count models, based on the article <doi:10.18637/jss.v109.i01>. Supports Frank and Gaussian copulas. Allows for mixed margins (e.g., one margin Poisson, the other zero-inflated negative binomial), and several marginal link functions. Built-in methods for publication-quality tables using texreg', post-estimation diagnostics using DHARMa', and testing for marginal zero-modification via <doi:10.1177/0962280217749991>. For information on copula regression for count data, see Genest and Nešlehová (2007) <doi:10.1017/S0515036100014963> as well as Nikoloulopoulos (2013) <doi:10.1007/978-3-642-35407-6_11>. For information on zero-inflated count regression generally, see Lambert (1992) <https://www.jstor.org/stable/1269547>. The author acknowledges support by NSF DMS-1925119 and DMS-212324.
Currently, the package provides several functions for plotting and analyzing bibliometric data (JIF, Journal Impact Factor, and paper percentile values), beamplots with citations and percentiles, and three plot functions to visualize the result of a reference publication year spectroscopy (RPYS) analysis performed in the free software CRExplorer (see <http://crexplorer.net>). Further extension to more plot variants is planned.
This package provides a two-step Bayesian approach for mode inference following Cross, Hoogerheide, Labonne and van Dijk (2024) <doi:10.1016/j.econlet.2024.111579>). First, a mixture distribution is fitted on the data using a sparse finite mixture (SFM) Markov chain Monte Carlo (MCMC) algorithm. The number of mixture components does not have to be known; the size of the mixture is estimated endogenously through the SFM approach. Second, the modes of the estimated mixture at each MCMC draw are retrieved using algorithms specifically tailored for mode detection. These estimates are then used to construct posterior probabilities for the number of modes, their locations and uncertainties, providing a powerful tool for mode inference.
This package produces an economic evaluation of a sample of suitable variables of cost and effectiveness / utility for two or more interventions, e.g. from a Bayesian model in the form of MCMC simulations. This package computes the most cost-effective alternative and produces graphical summaries and probabilistic sensitivity analysis, see Baio et al (2017) <doi:10.1007/978-3-319-55718-2>.
Computes approximated adjusted fractional Bayes factors for equality, inequality, and about equality constrained hypotheses. For a tutorial on this method, see Hoijtink, Mulder, van Lissa, & Gu, (2019) <doi:10.1037/met0000201>. For applications in structural equation modeling, see: Van Lissa, Gu, Mulder, Rosseel, Van Zundert, & Hoijtink, (2021) <doi:10.1080/10705511.2020.1745644>. For the statistical underpinnings, see Gu, Mulder, and Hoijtink (2018) <doi:10.1111/bmsp.12110>; Hoijtink, Gu, & Mulder, J. (2019) <doi:10.1111/bmsp.12145>; Hoijtink, Gu, Mulder, & Rosseel, (2019) <doi:10.31234/osf.io/q6h5w>.
Tool for quantitative research in scientometrics and bibliometrics. It implements the comprehensive workflow for science mapping analysis proposed in Aria M. and Cuccurullo C. (2017) <doi:10.1016/j.joi.2017.08.007>. bibliometrix provides various routines for importing bibliographic data from SCOPUS', Clarivate Analytics Web of Science (<https://www.webofknowledge.com/>), Digital Science Dimensions (<https://www.dimensions.ai/>), OpenAlex (<https://openalex.org/>), Cochrane Library (<https://www.cochranelibrary.com/>), Lens (<https://lens.org>), and PubMed (<https://pubmed.ncbi.nlm.nih.gov/>) databases, performing bibliometric analysis and building networks for co-citation, coupling, scientific collaboration and co-word analysis.