Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a set of R functions to output Rich Text Format (RTF) files with high resolution tables and graphics that may be edited with a standard word processor such as Microsoft Word.
Imputation of missing numerical outcomes for a longitudinal trial with protocol deviations. The package uses distinct treatment arm-based assumptions for the unobserved data, following the general algorithm of Carpenter, Roger, and Kenward (2013) <doi:10.1080/10543406.2013.834911>, and the causal model of White, Royes and Best (2020) <doi:10.1080/10543406.2019.1684308>. Sensitivity analyses to departures from these assumptions can be done by the Delta method of Roger. The program uses the same algorithm as the mimix Stata package written by Suzie Cro, with additional coding for the causal model and delta method. The reference-based methods are jump to reference (J2R), copy increments in reference (CIR), copy reference (CR), and the causal model, all of which must specify the reference treatment arm. Other methods are missing at random (MAR) and the last mean carried forward (LMCF). Individual-specific imputation methods (and their reference groups) can be specified.
Makes it easy to produce everyday ggplot2 charts in a functional way without an extensive "tree" implementation. The package includes over 15 functions for the production and arrangement of basic graphing.
STK++ <http://www.stkpp.org> is a collection of C++ classes for statistics, clustering, linear algebra, arrays (with an Eigen'-like API), regression, dimension reduction, etc. The integration of the library to R is using Rcpp'. The rtkore package includes the header files from the STK++ core library. All files contain only template classes and/or inline functions. STK++ is licensed under the GNU LGPL version 2 or later. rtkore (the stkpp integration into R') is licensed under the GNU GPL version 2 or later. See file LICENSE.note for details.
This package provides tools for linear, nonlinear and nonparametric regression and classification. Novel graphical methods for assessment of parametric models using nonparametric methods. One vs. All and All vs. All multiclass classification, optional class probabilities adjustment. Nonparametric regression (k-NN) for general dimension, local-linear option. Nonlinear regression with Eickert-White method for dealing with heteroscedasticity. Utilities for converting time series to rectangular form. Utilities for conversion between factors and indicator variables. Some code related to "Statistical Regression and Classification: from Linear Models to Machine Learning", N. Matloff, 2017, CRC, ISBN 9781498710916.
An implementation of R's DBI interface using ODBC package as a back-end. This allows R to connect to any DBMS that has a ODBC driver.
Easy installation, loading, and control of packages for redistricting data downloading, spatial data processing, simulation, analysis, and visualization. This package makes it easy to install and load multiple redistverse packages at once. The redistverse is developed and maintained by the Algorithm-Assisted Redistricting Methodology (ALARM) Project. For more details see <https://alarm-redist.org>.
Enhances the R Optimization Infrastructure (ROI) package by registering the CPLEX commercial solver. It allows for solving mixed integer quadratically constrained programming (MIQPQC) problems as well as all variants/combinations of LP, QP, QCP, IP.
Collection of tools to calculate portfolio performance metrics. Portfolio performance is a key measure for investors. These metrics are important to analyse how effectively their money has been invested. This package uses portfolio theories to give investor tools to evaluate their portfolio performance. For more information see, Markowitz, H.M. (1952), <doi:10.2307/2975974>. Analysis of Investments & Management of Portfolios [2012, ISBN:978-8131518748].
Features the multiple polynomial quadratic sieve (MPQS) algorithm for factoring large integers and a vectorized factoring function that returns the complete factorization of an integer. The MPQS is based off of the seminal work of Carl Pomerance (1984) <doi:10.1007/3-540-39757-4_17> along with the modification of multiple polynomials introduced by Peter Montgomery and J. Davis as outlined by Robert D. Silverman (1987) <doi:10.1090/S0025-5718-1987-0866119-8>. Utilizes the C library GMP (GNU Multiple Precision Arithmetic). For smaller integers, a simple Elliptic Curve algorithm is attempted followed by a constrained version of Pollard's rho algorithm. The Pollard's rho algorithm is the same algorithm used by the factorize function in the gmp package.
TiddlyWiki is a unique non-linear notebook for capturing, organising and sharing complex information. rtiddlywiki is a R interface of TiddlyWiki <https://tiddlywiki.com> to create new tiddler from R Markdown file, and then put into a local TiddlyWiki server if it is available.
Create densities, probabilities, random numbers, quantiles, and maximum likelihood estimation for several distributions, mainly the symmetric and asymmetric power exponential (AEP), a.k.a. the Subbottin family of distributions, also known as the generalized error distribution. Estimation is made using the design of Bottazzi (2004) <https://ideas.repec.org/p/ssa/lemwps/2004-14.html>, where the likelihood is maximized by several optimization procedures using the GNU Scientific Library (GSL)', translated to C++ code, which makes it both fast and accurate. The package also provides methods for the gamma, Laplace, and Asymmetric Laplace distributions.
Estimate significance of importance metrics for a Random Forest model by permuting the response variable. Produces null distribution of importance metrics for each predictor variable and p-value of observed. Provides summary and visualization functions for randomForest results.
This package provides a lightweight implementation of the geomorphon terrain form classification algorithm of Jasiewicz and Stepinski (2013) <doi:10.1016/j.geomorph.2012.11.005> based largely on the GRASS GIS r.geomorphon module. This implementation employs a novel algorithm written in C++ and RcppParallel'.
This package contains logic for sample-level variable set scoring using randomized reduced rank reconstruction error. Frost, H. Robert (2023) "Reconstruction Set Test (RESET): a computationally efficient method for single sample gene set testing based on randomized reduced rank reconstruction error" <doi:10.1101/2023.04.03.535366>.
This package provides several metrics for assessing relative importance in linear models. These can be printed, plotted and bootstrapped. The recommended metric is lmg, which provides a decomposition of the model explained variance into non-negative contributions. There is a version of this package available that additionally provides a new and also recommended metric called pmvd. If you are a non-US user, you can download this extended version from Ulrike Groempings web site.
Bayes estimation of probit choice models in cross-sectional and panel settings. The package can analyze binary, multivariate, ordered, and ranked choices, as well as heterogeneity of choice behavior among deciders. The main functionality includes model fitting via Gibbs sampling, tools for convergence diagnostic, choice data simulation, in-sample and out-of-sample choice prediction, and model selection using information criteria and Bayes factors. The latent class model extension facilitates preference-based decider classification, where the number of latent classes can be inferred via the Dirichlet process or a weight-based updating heuristic. This allows for flexible modeling of choice behavior without the need to impose structural constraints. For a reference on the method, see Oelschlaeger and Bauer (2021) <https://trid.trb.org/view/1759753>.
This package provides a friendly, object oriented API for creating PowerPoint slide decks in R.
This package provides a data mining approach for longitudinal and clustered data, which combines the structure of mixed effects model with tree-based estimation methods. See Sela, R.J. and Simonoff, J.S. (2012) RE-EM trees: a data mining approach for longitudinal and clustered data <doi:10.1007/s10994-011-5258-3>.
This package provides access to a suite of geospatial data layers for wildfire management, fuel modeling, ecology, natural resource management, climate, conservation, etc., via the LANDFIRE (<https://www.landfire.gov/>) Product Service ('LFPS') API.
Decoupled (e.g. separate averages) and censored (e.g. > 100 species) variables are continually reported by many well-established organizations (e.g. World Health Organization (WHO), Centers for Disease Control and Prevention (CDC), World Bank, and various national censuses). The challenge therefore is to infer what the original data could have been given summarized information. We present an R package that reverse engineers decoupled and/or censored count data with two main functions. The cnbinom.pars function estimates the average and dispersion parameter of a censored univariate frequency table. The rec function reverse engineers summarized data into an uncensored bivariate table of probabilities.
This package provides tools to help with shiny reactivity. The react object offers an alternative way to call reactive expressions to better identify them in the server code.
This package provides access to the xylib C library for to import xy data from powder diffraction, spectroscopy and other experimental methods.
Load data by campaigns, ads, ad sets and insights, ad account and business manager from Facebook Marketing API into R. For more details see official documents by Facebook Marketing API <https://developers.facebook.com/docs/marketing-api>.