Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides an interface to the OAuth 1.0 specification allowing users to authenticate via OAuth to the server of their choice.
Determination of rainfall-runoff erosivity factor.
Estimates of standard errors of popular risk and performance measures for asset or portfolio returns using methods as described in Chen and Martin (2021) <doi:10.21314/JOR.2020.446>.
This package provides a simple data science challenge system using R Markdown and Dropbox <https://www.dropbox.com/>. It requires no network configuration, does not depend on external platforms like e.g. Kaggle <https://www.kaggle.com/> and can be easily installed on a personal computer.
An R command interface to the MLwiN multilevel modelling software package.
The open sourced data management software Integrated Rule-Oriented Data System ('iRODS') offers solutions for the whole data life cycle (<https://irods.org/>). The loosely constructed and highly configurable architecture of iRODS frees the user from strict formatting constraints and single-vendor solutions. This package provides an interface to the iRODS HTTP API, allowing you to manage your data and metadata in iRODS with R. Storage of annotated files and R objects in iRODS ensures findability, accessibility, interoperability, and reusability of data.
Many packages in the r-dcm family take similar arguments, which are checked for expected structures and values. Rather than duplicating code across several packages, commonly used check functions are included here. This package can then be imported to access the check functions in other packages.
The rankFD() function calculates the Wald-type statistic (WTS) and the ANOVA-type statistic (ATS) for nonparametric factorial designs, e.g., for count, ordinal or score data in a crossed design with an arbitrary number of factors. Brunner, E., Bathke, A. and Konietschke, F. (2018) <doi:10.1007/978-3-030-02914-2>.
Rare variant association tests: burden tests (Bocher et al. 2019 <doi:10.1002/gepi.22210>) and the Sequence Kernel Association Test (Bocher et al. 2021 <doi:10.1038/s41431-020-00792-8>) in the whole genome; and genetic simulations.
Data for the examples and exercises in the book "R by Example". Jim Albert and Maria Rizzo (2012, ISBN 978-1-4614-1365-3).
Understanding heterogeneous causal effects based on pretreatment covariates is a crucial step in modern empirical work in data science. Building on the recent developments in Calonico et al (2025) <https://rdpackages.github.io/references/Calonico-Cattaneo-Farrell-Palomba-Titiunik_2025_HTERD.pdf>, this package provides tools for estimation and inference of heterogeneous treatment effects in Regression Discontinuity (RD) Designs. The package includes two main commands: rdhte to conduct estimation and robust bias-corrected inference for conditional RD treatment effects (given choice of bandwidth parameter); rdbwhte', which implements automatic bandwidth selection methods; and rdhte_lincom to test linear combinations of parameters.
This package provides a user-friendly interface to NASA Exoplanets Archive API <https://exoplanetarchive.ipac.caltech.edu/>, enabling retrieval and analysis of exoplanetary and stellar data. Includes functions for querying, filtering, summarizing, and computing derived parameters from the Exoplanets catalog.
R functions for generating and/or displaying random Chuck Norris facts. Based on data from the Internet Chuck Norris database ('ICNDb').
This package provides methods for estimating online robust reduced-rank regression. The Gaussian maximum likelihood estimation method is described in Johansen, S. (1991) <doi:10.2307/2938278>. The majorisation-minimisation estimation method is partly described in Zhao, Z., & Palomar, D. P. (2017) <doi:10.1109/GlobalSIP.2017.8309093>. The description of the generic stochastic successive upper-bound minimisation method and the sample average approximation can be found in Razaviyayn, M., Sanjabi, M., & Luo, Z. Q. (2016) <doi:10.1007/s10107-016-1021-7>.
The significance of mean difference tests in clinical trials is established if at least r null hypotheses are rejected among m that are simultaneously tested. This package enables one to compute necessary sample sizes for single-step (Bonferroni) and step-wise procedures (Holm and Hochberg). These three procedures control the q-generalized family-wise error rate (probability of making at least q false rejections). Sample size is computed (for these single-step and step-wise procedures) in a such a way that the r-power (probability of rejecting at least r false null hypotheses, i.e. at least r significant endpoints among m) is above some given threshold, in the context of tests of difference of means for two groups of continuous endpoints (variables). Various types of structure of correlation are considered. It is also possible to analyse data (i.e., actually test difference in means) when these are available. The case r equals 1 is treated in separate functions that were used in Lafaye de Micheaux et al. (2014) <doi:10.1080/10543406.2013.860156>.
It fires a query to the API to get the unsampled data in R for Google Analytics Premium Accounts. It retrieves data from the Google drive document and stores it into the local drive. The path to the excel file is returned by this package. The user can read data from the excel file into R using read.csv() function.
Interaction with "RevBayes" via R. Objects created in "RevBayes" can be passed into the R environment, and many types can be converted into similar R objects. To download "RevBayes", go to <https://revbayes.github.io/download>.
The regression-based (RB) approach is a method to test the missing data mechanism. This package contains two functions that test the type of missing data (Missing Completely At Random vs Missing At Random) on the basis of the RB approach. The first function applies the RB approach independently on each variable with missing data, using the completely observed variables only. The second function tests the missing data mechanism globally (on all variables with missing data) with the use of all available information. The algorithm is adapted both to continuous and categorical data.
Stan implementation of the Theory of Visual Attention (TVA; Bundesen, 1990; <doi:10.1037/0033-295X.97.4.523>) and numerous convenience functions for generating, compiling, fitting, and analyzing TVA models.
Estimates and plots as a heat map the rolling window wavelet correlation (RWWC) coefficients statistically significant (within the 95% CI) between two regular (evenly spaced) time series. RolWinWavCor also plots at the same graphic the time series under study. The RolWinWavCor was designed for financial time series, but this software can be used with other kinds of data (e.g., climatic, ecological, geological, etc). The functions contained in RolWinWavCor are highly flexible since these contains some parameters to personalize the time series under analysis and the heat maps of the rolling window wavelet correlation coefficients. Moreover, we have also included a data set (named EU_stock_markets) that contains nine European stock market indices to exemplify the use of the functions contained in RolWinWavCor'. Methods derived from Polanco-Martà nez et al (2018) <doi:10.1016/j.physa.2017.08.065>).
This package implements reversal association pattern analysis for categorical data. Detects sub-tables exhibiting reversal associations in contingency tables, provides visualization tools, and supports simulation-based validation for complex I Ã J tables.
Implementation of JQuery <https://jquery.com> and CSS styles to allow the display of fireworks on a document. Toolkit to easily incorporate celebratory splashes in Rmarkdown and shiny apps.
Earth Engine <https://earthengine.google.com/> client library for R. All of the Earth Engine API classes, modules, and functions are made available. Additional functions implemented include importing (exporting) of Earth Engine spatial objects, extraction of time series, interactive map display, assets management interface, and metadata display. See <https://r-spatial.github.io/rgee/> for further details.
Supports modelling real-time case data to facilitate the real-time surveillance of infectious diseases and other point phenomena. The package provides automated computational grid generation over an area of interest with methods to map covariates between geographies, model fitting including spatially aggregated case counts, and predictions and visualisation. Both Bayesian and maximum likelihood methods are provided. Log-Gaussian Cox Processes are described by Diggle et al. (2013) <doi:10.1214/13-STS441> and we provide both the low-rank approximation for Gaussian processes described by Solin and Särkkä (2020) <doi:10.1007/s11222-019-09886-w> and Riutort-Mayol et al (2023) <doi:10.1007/s11222-022-10167-2> and the nearest neighbour Gaussian process described by Datta et al (2016) <doi:10.1080/01621459.2015.1044091>.