Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Integrated tools to support rigorous and well documented data harmonization based on Maelstrom Research guidelines. The package includes functions to assess and prepare input elements, apply specified processing rules to generate harmonized datasets, validate data processing and identify processing errors, and document and summarize harmonized outputs. The harmonization process is defined and structured by two key user-generated documents: the DataSchema (specifying the list of harmonized variables to generate across datasets) and the Data Processing Elements (specifying the input elements and processing algorithms to generate harmonized variables in DataSchema formats). The package was developed to address key challenges of retrospective data harmonization in epidemiology (as described in Fortier I and al. (2017) <doi:10.1093/ije/dyw075>) but can be used for any data harmonization initiative.
This package provides a set of tools for creation, manipulation, and modeling of tensors with arbitrary number of modes. A tensor in the context of data analysis is a multidimensional array. rTensor does this by providing a S4 class Tensor that wraps around the base array class. rTensor provides common tensor operations as methods, including matrix unfolding, summing/averaging across modes, calculating the Frobenius norm, and taking the inner product between two tensors. Familiar array operations are overloaded, such as index subsetting via [ and element-wise operations. rTensor also implements various tensor decomposition, including CP, GLRAM, MPCA, PVD, and Tucker. For tensors with 3 modes, rTensor also implements transpose, t-product, and t-SVD, as defined in Kilmer et al. (2013). Some auxiliary functions include the Khatri-Rao product, Kronecker product, and the Hadamard product for a list of matrices.
Connect R with MOA (Massive Online Analysis - <https://moa.cms.waikato.ac.nz/>) to build classification models and regression models on streaming data or out-of-RAM data. Also streaming recommendation models are made available.
Helps users in quickly visualizing risk-of-bias assessments performed as part of a systematic review. It allows users to create weighted bar-plots of the distribution of risk-of-bias judgments within each bias domain, in addition to traffic-light plots of the specific domain-level judgments for each study. The resulting figures are of publication quality and are formatted according the risk-of-bias assessment tool use to perform the assessments. Currently, the supported tools are ROB2.0 (for randomized controlled trials; Sterne et al (2019) <doi:10.1136/bmj.l4898>), ROBINS-I (for non-randomised studies of interventions; Sterne et al (2016) <doi:10.1136/bmj.i4919>), and QUADAS-2 (for diagnostic accuracy studies; Whiting et al (2011) <doi:10.7326/0003-4819-155-8-201110180-00009>).
Simple, native RethinkDB client.
Perform a Relative Weights Analysis (RWA) (a.k.a. Key Drivers Analysis) as per the method described in Tonidandel & LeBreton (2015) <DOI:10.1007/s10869-014-9351-z>, with its original roots in Johnson (2000) <DOI:10.1207/S15327906MBR3501_1>. In essence, RWA decomposes the total variance predicted in a regression model into weights that accurately reflect the proportional contribution of the predictor variables, which addresses the issue of multi-collinearity. In typical scenarios, RWA returns similar results to Shapley regression, but with a significant advantage on computational performance.
Allows users to easily create references to R objects then dereference when needed or modify in place without using reference classes, environments, or active bindings as workarounds. Users can also create expression references that allow subsets of any object to be referenced or expressions containing references to multiple objects.
Efficient diffusing of content across function documentations. Sections, parameters or dot parameters are extracted from function documentations and turned into valid Rd character strings, which are ready to diffuse into the roxygen comments of another function by inserting inline code.
This package provides robust methods to detect change-points in uni- or multivariate time series. They can cope with corrupted data and heavy tails. Focus is on the detection of abrupt changes in location, but changes in the scale or dependence structure can be detected as well. This package provides tests for change detection in uni- and multivariate time series based on Huberized versions of CUSUM tests proposed in Duerre and Fried (2019) <DOI:10.48550/arXiv.1905.06201>, and tests for change detection in univariate time series based on 2-sample U-statistics or 2-sample U-quantiles as proposed by Dehling et al. (2015) <DOI:10.1007/978-1-4939-3076-0_12> and Dehling, Fried and Wendler (2020) <DOI:10.1093/biomet/asaa004>. Furthermore, the packages provides tests on changes in the scale or the correlation as proposed in Gerstenberger, Vogel and Wendler (2020) <DOI:10.1080/01621459.2019.1629938>, Dehling et al. (2017) <DOI:10.1017/S026646661600044X>, and Wied et al. (2014) <DOI:10.1016/j.csda.2013.03.005>.
This package provides a S4 class has been created such that complex operations can be executed on each cell of a raster map. The raster of objects contains a raster map with the addition of a list of generic objects: one object for each raster cells. It allows to write few lines of R code for complex map algebra. Two environmental applications about frequency analysis of raster map of precipitation and creation of a raster map of soil water retention curves have been presented.
This package creates interactive analytic graphs with R'. It joins the data analysis power of R and the visualization libraries of JavaScript in one package. The package provides interactive networks, timelines, barplots, image galleries and evolving networks. Graphs are represented as D3.js graphs embedded in a web page ready for its interactive analysis and exploration.
This package creates a header only package to link to the CGAL (Computational Geometry Algorithms Library) header files in Rcpp'. There are a variety of potential uses for the software such as Hilbert sorting, K-D Tree nearest neighbors, and convex hull algorithms. For more information about how to use the header files, see the CGAL documentation at <https://www.cgal.org>. Currently downloads version 6.1 of the CGAL header files.
An implementation of the RainFARM (Rainfall Filtered Autoregressive Model) stochastic precipitation downscaling method (Rebora et al. (2006) <doi:10.1175/JHM517.1>). Adapted for climate downscaling according to D'Onofrio et al. (2018) <doi:10.1175/JHM-D-13-096.1> and for complex topography as in Terzago et al. (2018) <doi:10.5194/nhess-18-2825-2018>. The RainFARM method is based on the extrapolation to small scales of the Fourier spectrum of a large-scale precipitation field, using a fixed logarithmic slope and random phases at small scales, followed by a nonlinear transformation of the resulting linearly correlated stochastic field. RainFARM allows to generate ensembles of spatially downscaled precipitation fields which conserve precipitation at large scales and whose statistical properties are consistent with the small-scale statistics of observed precipitation, based only on knowledge of the large-scale precipitation field.
The expander functions rely on the mathematics developed for the Hessian-definiteness invariance theorem for linear projection transformations of variables, described in authors paper, to generate the full, high-dimensional gradient and Hessian from the lower-dimensional derivative objects. This greatly relieves the computational burden of generating the regression-function derivatives, which in turn can be fed into any optimization routine that utilizes such derivatives. The theorem guarantees that Hessian definiteness is preserved, meaning that reasoning about this property can be performed in the low-dimensional space of the base distribution. This is often a much easier task than its equivalent in the full, high-dimensional space. Definiteness of Hessian can be useful in selecting optimization/sampling algorithms such as Newton-Raphson optimization or its sampling equivalent, the Stochastic Newton Sampler. Finally, in addition to being a computational tool, the regression expansion framework is of conceptual value by offering new opportunities to generate novel regression problems.
TSON, short for Typed JSON, is a binary-encoded serialization of JSON like document that support JavaScript typed data (https://github.com/tercen/TSON).
Implementation of the relative placement algorithm widely used in the scoring of Lindy Hop and West Coast Swing dance contests.
Generate random positions (latitude/longitude), Well-known text ('WKT') points or polygons, or GeoJSON points or polygons.
Visualize networks using the javascript library roughjs'. This allows to draw sketchy, hand-drawn-like networks.
This package provides a collection of functions for computing "r-values" from various kinds of user input such as MCMC output or a list of effect size estimates and associated standard errors. Given a large collection of measurement units, the r-value, r, of a particular unit is a reported percentile that may be interpreted as the smallest percentile at which the unit should be placed in the top r-fraction of units.
Rcmdr Plugin for the FactoMineR package.
Enhances the R Optimization Infrastructure ('ROI') package with the DEoptim and DEoptimR package. DEoptim is used for unconstrained optimization and DEoptimR for constrained optimization.
To enable quantitative trait loci mapping of neighbor effects, this package extends a single-marker regression to interval mapping. The theoretical background of the method is described in Sato et al. (2021) <doi:10.1093/g3journal/jkab017>.
Helps to prepare a release. Before releasing an R package it is important to update the DESCRIPTION file and the changelog. This package prepares these files and also updates the versions according to the branches. It relies heavily on the desc packages.
Extracts tagged text from markdown manuscripts for inclusion in dynamically generated revision letters. Provides an R markdown template based on papaja::revision_letter_pdf() with comment cross-referencing, a system for managing multiple sections of extracted text, and a way to automatically determine the page number of quoted sections from PDF manuscripts.